设函数
(
),其中
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求函数
的极大值和极小值.
(Ⅰ)当
时,曲线
在点
处的切线方程为
;(Ⅱ)函数
在
处取得极小值
,在
处取得极大值
.
解析试题分析:(Ⅰ)把
科目:高中数学
来源:
题型:解答题
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
科目:高中数学
来源:
题型:解答题
已知
科目:高中数学
来源:
题型:解答题
已知函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
代入
,得
,结合已知条件即可得切点的坐标为
.再对
求导,即可求得
,即可得所求切线的斜率,最后利用直线方程的点斜式,即可得所求切线的方程;(Ⅱ)首先对
求导,得
.令
,解得
或
.
,列出当
变化时,
,
随
的变化情况表格,即可求得当
时,函数
的极大值和极小值.
试题解析:(Ⅰ)当
时,
,得
, 1分
且
,
. 3分
所以,曲线
在点
处的切线方程是
, 5分
整理得
. 6分
(Ⅱ)解:
,
.
令
,解得
或
. 8分
若
,当
变化时,
的正负如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
学科王同步课时练习系列答案
三维导学案系列答案
单元双测试卷系列答案
活页练习西安出版社系列答案
作业课课清系列答案
轻松15分达标作业系列答案
节节高解析测评系列答案
海淀金卷系列答案
全能金卷全能卷王系列答案
名师优选全程练考卷系列答案
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
,
,且直线
与曲线
相切.
(1)若对
内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)(ⅰ)当
时,求最大的正整数
,使得任意
个实数![]()
![]()
(
是自然对数的底数)都有
成立;
(ⅱ)求证:![]()
.
(
为自然对数的底数),
(
为常数),
是实数集
上的奇函数.
(1)求证:
;
(2)讨论关于
的方程:
的根的个数;
(3)设
,证明:
(
为自然对数的底数).
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号