精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的极值点;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

(1)为函数的极小值点;(2)的取值范围是
(3)的取值范围是

解析试题分析:(1)因为.由
所以为函数的极小值点;
(2).
上为单调函数,则上恒成立.
等价于,所以.
等价于,所以.由此可得的取值范围.
(3)构造函数
上至少存在一个,使得成立,则只需上的最大值大于0 即可.接下来就利用导数求上的最大值.
时,,所以在不存在使得成立.
时,,因为,所以恒成立,
单调递增,
所以只需,解之即得的取值范围.
试题解析:(1)因为.由
所以为函数的极小值点              3分
(2).
因为上为单调函数,所以上恒成立                                                      5分
等价于
.                     7分
等价于恒成立,

综上,的取值范围是.                         8分
(3)构造函数
时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数),其图象是曲线
(1)当时,求函数的单调减区间;
(2)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;
(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)当时,求函数的单调增区间;
(2)求函数在区间上的最小值;
(3)在(1)的条件下,设=+
求证:  (),参考数据:。(13分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).

(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设

(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数),其中
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中为自然对数的底数, .
(1)设,求函数的最值;
(2)若对于任意的,都有成立,求的取值范围.

查看答案和解析>>

同步练习册答案