已知两点、,点为坐标平面内的动点,满足.
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,是轴上的一动点,试讨论直线与圆的位置关系.
(1)动点的轨迹方程为;(2)点的纵坐标为.
解析试题分析:(1)设动点的坐标为,直接利用题中的条件列式并化简,从而求出动点的轨迹方程;(2)先设点,利用导数求出曲线在点和点处的切线方程,并将两切线方程联立,求出交点的坐标,利用两切线垂直得到,从而求出点的纵坐标.
试题解析:(1)设,则,∵,
∴. 即,即,
所以动点的轨迹M的方程. 4分
(2)设点、的坐标分别为、,
∵、分别是抛物线在点、处的切线,
∴直线的斜率,直线的斜率.
∵,
∴, 得. ①
∵、是抛物线上的点,
∴
∴直线的方程为,直线的方程为.
由 解得
∴点的纵坐标为.
考点:1.动点的轨迹方程;2.利用导数求切线方程;3.两直线的位置关系;4.两直线的交点
科目:高中数学 来源: 题型:解答题
(本小题13分) 已知函数(为自然对数的底数)。
(1)若,求函数的单调区间;
(2)是否存在实数,使函数在上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 (为实常数) .
(1)当时,求函数在上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,()
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当且时,令,(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com