精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当时,令(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由

(1);(2)当时,,函数的单调递增区间为
时,,函数的单调递减区间为,单调递增区间为.
(3)对任意给定的正实数,曲线上总存在两点,满足条件.

解析试题分析:(1)求,要函数由极值,也就是有实数解,由于是关于的二次函数,则由便求得的取值范围;(2)求,需要对实数进行分类讨论,,在这两种情况下分别求出函数的单调区间,注意分类讨论问题,应弄清对哪个字母分类讨论,分类应不重不漏;(3)是探索性问题,要说明存在是以O为直角顶点的直角三角形,
且斜边中点在y轴上,需要证明该方程有解,要对进行分类讨论分别说明.
试题解析:(1),若存在极值点,
有两个不相等实数根.
所以,解得 .
(2)
时,,函数的单调递增区间为
时,,函数的单调递减区间为,单调递增区间为.
时,
假设使得是以O为直角顶点的直角三角形,且斜边中点在y轴上.
.
不妨设.故,则.
该方程有解,
时,,代入方程
,而此方程无实数解;
时,
时,,代入方程,即
,则上恒成立.
上单调递增,从而,则值域为.
∴当时,方程有解,即方程有解.
综上所述,对任意给定的正实数,曲线上总存在两点,使得是以O为直角顶点的直角三角形,且斜边中点在y轴上.
考点:导数的计算,函数的极值,构造法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点为坐标平面内的动点,满足.
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,轴上的一动点,试讨论直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在使得≥0成立,求的范围
(2)求证:当>1时,在(1)的条件下,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.

查看答案和解析>>

同步练习册答案