精英家教网 > 高中数学 > 题目详情

已知函数的图象与直线相切于点.
(1)求实数的值; (2)求的极值.

(1);(2).

解析试题分析:(1)将切点坐标代入函数得一等式,函数在某点处的导数即为该点处切线的斜率,由这两个等式可求得a、b的值. (2)将(1)所求得的a、b的值代入得,通过求导,即得其极值.
试题解析:(1)由求导得:
               2分
据条件有
               5分
解之得              6分
(2)据(1)知,所以
           7分
所以在区间内是增函数,在区间上是减函数   9分 故        11分
            12分
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)若,设是函数的两个极值点,且,记分别为的极大值和极小值,令,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点为坐标平面内的动点,满足.
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,轴上的一动点,试讨论直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列定积分.
(1)                       (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数存在极值点,求实数的取值范围;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,令(),()为曲线上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.

查看答案和解析>>

同步练习册答案