已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。
(Ⅰ) 的单调递减区间为,单调递增区间为;(Ⅱ)实数的最小值;(Ⅲ)当时,的图像与的图像恰有四个不同交点.
解析试题分析:(I)求函数的单调区间,首先求出的解析式,得,求函数的单调区间,可用定义,也可用导数法,由于本题含有对数函数,可通过求导来求,对求导得,分别求出与的范围,从而求出的单调区间;(II)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值,可利用导数的几何意义表示出切线的斜率,根据恒成立,将分离出来得,即大于等于的最大值即可,这样求出的范围,从而得到的最小值;(III)函数的图象与的图象有四个不同的交点,即方程有四个不同的根,分离出后,转化成新函数的极大值和极小值问题,利用图像即可求出实数的取值范围.
科目:高中数学
来源:
题型:解答题
已知函数,
科目:高中数学
来源:
题型:解答题
设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
科目:高中数学
来源:
题型:解答题
(本小题13分) 已知函数(为自然对数的底数)。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(Ⅰ)F(x)=f(x)+g(x)=lnx+(x>0), ==
∵a>0,由FF'(x)>0Þx∈(a,+∞),∴F(x)在(a,+∞)上是增函数.
由FF'(x)<0Þx∈(0,a),∴F(x)在(0,a)上是减函数.
∴F(x)的单调递减区间为(0,a),单调递增区间为(a,+∞).
(Ⅱ)由FF'(x)= (0<x≤3)得
k= FF'(x0)= ≤(0<x0≤3)恒成立Ûa≥-x02+x0恒成立.
∵当x0=1时,-x02+x0取得最大值
∴a≥,a的最小值为.
(Ⅲ)若y=g()+m-1=x2+m-的图像与y=f(1+x2)=ln(x2+1)的图像恰有四个不同交点,即x2+m-=ln(x2+1)有四个不同的根,亦即m=ln(x2+1)-x2+有四个不同的根.令= ln(x2+1)-x2+.
则GF'(x)=-x==
当x变化时GF'(x)、G(x)的变化情况如下表: (-¥,-1) (-1,0) (0,1) (1,+¥) GF'(x)的符号
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)求函数g(x)在区间上的最小值;
(Ⅲ)若存在,使方程成立,求实数a的取值范围(其中e=2.71828是自然对数的底数)
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.
(1)若,求函数的单调区间;
(2)是否存在实数,使函数在上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又,
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号