已知![]()
.
(1)当
时,求
上的值域;
(2)求函数
在
上的最小值;
(3)证明: 对一切
,都有
成立
(1)
值域为
;(2)
;(3)证明如下.
解析试题分析:(1)
对称轴为
,开口向上,
.
(2)
,可知
在
单调递减,在
单调递增.因为
,故要分三种情况讨论,即①
,t无解; ②
,即
时,
; ③
,即
时,
在
上单调递增,
;
所以
.
(3) 设
,要使
在
恒成立,即
.由(2)可求
,再利用导数求
.
试题解析:
(1)∵
=
, x∈[0,3]
当
时,
;当
时,
,故
值域为![]()
(2)
,当
,
,
单调递减,
当
,
,
单调递增.
①
,t无解;
②
,即
时,
;
③
,即
时,
在
上单调递增,
;
所以
.
(3)
,所以问题等价于证明
,由(2)可知
的最小值是
,当且仅当
时取到;
设
,则
,易得
,当且仅当
时取到,从而对一切
,都有
成立.
考点:1、二次函数求最值;2、利用导数判断单调性,求最值;3、参数讨论思想;4、恒成立问题的转化思想.
科目:高中数学 来源: 题型:解答题
如图,现要在边长为
的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.![]()
(1)求
的取值范围;(运算中
取
)
(2)若中间草地的造价为
元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,设![]()
(Ⅰ)求函数
的单调区间
(Ⅱ)若以函数
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值
(Ⅲ)是否存在实数
,使得函数
的图象与函数
的图象恰有四个不同交点?若存在,求出实数
的取值范围;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
=
。
(1)当
时,求函数
的单调增区间;
(2)求函数
在区间
上的最小值;
(3)在(1)的条件下,设
=
+
,
求证:
(
),参考数据:
。(13分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
:
.
(Ⅰ)当
时,求曲线
的斜率为1的切线方程;
(Ⅱ)设斜率为
的两条直线与曲线
相切于
两点,求证:
中点
在曲线
上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线
的方程为:
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
.
(1)曲线y=f(x)在x=0处的切线恰与直线
垂直,求
的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com