精英家教网 > 高中数学 > 题目详情

已知
(1)当时,求上的值域;
(2)求函数上的最小值;
(3)证明: 对一切,都有成立

(1) 值域为;(2);(3)证明如下.

解析试题分析:(1)对称轴为,开口向上,.
(2),可知单调递减,在单调递增.因为,故要分三种情况讨论,即①,t无解; ②,即时,;   ③,即时,上单调递增,
所以.
(3) 设,要使恒成立,即.由(2)可求,再利用导数求.
试题解析:
(1)∵=, x∈[0,3]
时,;当时,,故值域为
(2),当单调递减,
单调递增.
,t无解;
,即时,
,即时,上单调递增,
所以
(3) ,所以问题等价于证明,由(2)可知的最小值是,当且仅当时取到;
,则,易得,当且仅当时取到,从而对一切,都有成立.
考点:1、二次函数求最值;2、利用导数判断单调性,求最值;3、参数讨论思想;4、恒成立问题的转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)当时,求函数的单调增区间;
(2)求函数在区间上的最小值;
(3)在(1)的条件下,设=+
求证:  (),参考数据:。(13分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(Ⅰ)当时,求曲线的斜率为1的切线方程;
(Ⅱ)设斜率为的两条直线与曲线相切于两点,求证:中点在曲线上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线的方程为:,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)

查看答案和解析>>

同步练习册答案