已知曲线
:
.
(Ⅰ)当
时,求曲线
的斜率为1的切线方程;
(Ⅱ)设斜率为
的两条直线与曲线
相切于
两点,求证:
中点
在曲线
上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线
的方程为:
,求
的值.
(Ⅰ)
;(Ⅱ)详见解析;(Ⅲ)
.
解析试题分析:(Ⅰ)当
时,先求导,通过斜率为1得到切点.然后利用点斜式得到所求切线方程;(Ⅱ)先将
两点的坐标设出,其中纵坐标用相应点的横坐标表示.再由导数的几何意义,得到
两点横坐标满足
.从而得到
中点
,又
中点
在曲线
上
,显然成立.得证;(Ⅲ)由
中点在直线
,又在曲线
,从而得
,再反代如直线与曲线联立得方程,得到
两点的坐标,代入导函数中得到斜率,从而得到
.
试题解析:(Ⅰ)当
时,
,
设切点为
,由
,切点为![]()
故
为所求. (4分)
(Ⅱ)
,设
,
由导数的几何意义有![]()
![]()
![]()
中点
,即
,
又
中点
在曲线
上
,显然成立.得证. (8分)
(Ⅲ)由(Ⅱ)知,
中点
的横坐标为
,且
在
上,
,
又
在曲线
上,
,
所以
.
由
,
由于
,
故
.
综上,
为所求. (13分)
考点:1.导数的几何意义;2.直线的方程;3.直线与曲线的位置关系.
科目:高中数学 来源: 题型:解答题
已知a,b为常数,a¹0,函数
.
(1)若a=2,b=1,求
在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:
在区间[1,2]上是增函数;
②若
,
,且
在区间[1,2]上是增函数,求由所有点
形成的平面区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
,曲线
通过点(0,2a+3),且在
处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出
的解析式;
(III)在(II)的条件下,g(x)满足
,求g(x)的最大值及相应x值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分) 已知函数
(
为自然对数的底数)。
(1)若
,求函数
的单调区间;
(2)是否存在实数
,使函数
在
上是单调增函数?若存在,求出
的值;若不存在,请说明理由。恒成立,则![]()
,又
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(I) 当
,求
的最小值;
(II) 若函数
在区间
上为增函数,求实数
的取值范围;
(III)过点
恰好能作函数
图象的两条切线,并且两切线的倾斜角互补,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某连锁分店销售某种商品,每件商品的成本为
元,并且每件商品需向总店交
元的管理费,预计当每件商品的售价为
元时,一年的销售量为
万件.
(1)求该连锁分店一年的利润
(万元)与每件商品的售价
的函数关系式
;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润
最大,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为实常数) .
(1)当
时,求函数
在
上的最大值及相应的
值;
(2)当
时,讨论方程
根的个数.
(3)若
,且对任意的
,都有
,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com