精英家教网 > 高中数学 > 题目详情

已知函数
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.

(I);(II);(III)

解析试题分析:(I)先解得函数的定义域,再利用导数判断函数的单调性,并求最小值;(II)先对函数求导,由,再分离变量,构造新函数,再利用导数求在区间上的最小值,由可求得的取值范围;(III),设两切点A、B坐标,利用导数求过点的两切线斜率,即可得方程,由条件列方程组求M、N两点的横坐标关系,根据判别式大于0可解得的取值范围.
试题解析:(I)        1分
的变化的情况如下:







0
+


极小值

                                                                3分
所以,                         4分
(II) 由题意得:                           5分
函数在区间上为增函数,
,即上恒成立,
,                                      

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax(a>0).
(I)当a=2时,求f(x)的单调区间与极值;
(Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(Ⅰ)当时,求曲线的斜率为1的切线方程;
(Ⅱ)设斜率为的两条直线与曲线相切于两点,求证:中点在曲线上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线的方程为:,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数上是减函数,求实数a的最小值;
(Ⅲ)若,使)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

同步练习册答案