精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.

(1)单调增区间分别为,单调减区间为;(2).

解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值以及不等式的基础知识,考查分类讨论思想,考查综合运用数学知识和方法分析问题解决问题的能力和计算能力.第一问,当时,函数解析式中没有参数,直接求导,令导数大于0和小于0,分别解出函数的单调增区间和单调减区间;第二问,因为的两个根是和1,所以需要讨论和1的大小,分3种情况进行讨论,分别列表判断函数的单调性、极值、最值,求出函数在闭区间上的最大值判断是否等于,求出的取值范围.
试题解析:     2分
(1)当时,
时,,

所以的单调增区间分别为,      5分
的单调减区间为.
(2)(Ⅰ)当时,上单调递增,最大值为
(Ⅱ)当时,列表如下:

x
0
(0,a)
a
(a,1)
1
(1,1+a)
a+1
f/(x)
 
+
0
-
0
+
 
f(x)
 

极大值f(a)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数上为增函数,求实数的取值范围;
(Ⅱ)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上为减函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中
(Ⅰ)若是函数的极值点,求实数的值;
(Ⅱ)若对任意的为自然对数的底数)都有成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若函数有两个极值点),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分) 已知函数为自然对数的底数)。
(1)若,求函数的单调区间;
(2)是否存在实数,使函数上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.

查看答案和解析>>

同步练习册答案