精英家教网 > 高中数学 > 题目详情

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若函数有两个极值点),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明

(Ⅰ)在区间上是单调递减函数;(Ⅱ)k的取值范围是;(Ⅲ)详见解析.

解析试题分析:(Ⅰ)将代入求导,根据其符号即可得其单调性;(Ⅱ)函数有两个极值点,则的两个根,即方程有两个根.接下来就研究函数图象特征,结合图象便可知取何值时,方程有两个根.

(Ⅲ)结合图象可知,函数的两个极值点满足.
,这里面有两个变量,那么能否换掉一个呢?
,得,利用这个关系式便可将换掉而只留
,这样根据的范围,便可得,从而使问题得证.
试题解析:(Ⅰ)若,则
时,
故函数在区间上是单调递减函数. 4分
(Ⅱ)函数有两个极值点,则的两个根,
即方程有两个根,设,则
时,,函数单调递增且
时,,函数单调递增且
时,,函数单调递减且
要使有两个根,只需
故实数k的取值范围是. 9分
(Ⅲ)由(Ⅱ)的解法可知,函数的两个极值点满足, 10分
,得
所以
由于,故
所以. 14分
考点:1、导数的应用;2、不等关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,半径为30的圆形(为圆心)铁皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形材料卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设与矩形材料的边的夹角为,圆柱的体积为.

(Ⅰ)求关于的函数关系式?
(Ⅱ)求圆柱形罐子体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的极小值;
(Ⅱ)若函数上为增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(1)当时,求函数的单调区间和极值;
(2)若恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数上是减函数,求实数a的最小值;
(Ⅲ)若,使)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)若,设是函数的两个极值点,且,记分别为的极大值和极小值,令,求实数的取值范围.

查看答案和解析>>

同步练习册答案