已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)
(Ⅰ)当,即时,的增区间为,当时,的增区间为,减区间为;
(Ⅱ).
解析试题分析:(Ⅰ)求函数的单调区间,首先确定定义域,可通过单调性的定义,或求导确定单调区间,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,有基本不等式知,,需讨论,当,即时,,的增区间为,当时,令,,解出就能求出函数的单调区间;(Ⅱ) 若,且有两个极值点,求的取值范围,由(Ⅰ)可知,在内递减,得 ,且,得,又由(Ⅰ)可知,,即,由,可求出,再由,判断它的单调性,从而求出范围.
试题解析:(Ⅰ) 1分
当,即时,的增区间为 3分
②当时, 5分
的增区间为,减区间为 7分
(Ⅱ) 由(Ⅰ)可知,在内递减, 8分
,,
而在上递减, 10分
12分
令,
在上递减 14分
15分
考点:函数与导数,函数单调性.
科目:高中数学 来源: 题型:解答题
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)(ⅰ)当时,求最大的正整数,使得任意个实数(是自然对数的底数)都有成立;
(ⅱ)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 (为实常数) .
(1)当时,求函数在上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(为自然对数的底数),(为常数),是实数集上的奇函数.
(1)求证:;
(2)讨论关于的方程:的根的个数;
(3)设,证明:(为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com