已知函数
(其中
是实数).
(Ⅰ)求
的单调区间;
(Ⅱ)若
,且
有两个极值点
,求
的取值范围.
(其中
是自然对数的底数)
(Ⅰ)当
,即
时,
的增区间为
,当
时,
的增区间为
,减区间为
;
(Ⅱ)
.
解析试题分析:(Ⅰ)求函数
的单调区间,首先确定定义域
,可通过单调性的定义,或求导确定单调区间,由于
,含有对数函数,可通过求导来确定单调区间,对函数
求导得
,有基本不等式知,
,需讨论,当
,即
时,
,
的增区间为
,当
时,令
,
,解出
就能求出函数
的单调区间;(Ⅱ) 若
,且
有两个极值点
,求
的取值范围,由(Ⅰ)可知,
在
内递减,得
,且
,得
,又由(Ⅰ)可知,
,即
,由
,可求出
,再由
,判断它的单调性,从而求出范围.
试题解析:(Ⅰ)
1分
当
,即
时,![]()
的增区间为
3分
②当
时,![]()
![]()
5分
的增区间为
,减区间为
7分
(Ⅱ) 由(Ⅰ)可知,
在
内递减,
8分
,
,
而
在
上递减,
10分
12分
令![]()
,![]()
在
上递减 14分
15分
考点:函数与导数,函数单调性.
科目:高中数学 来源: 题型:解答题
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,
,且直线
与曲线
相切.
(1)若对
内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)(ⅰ)当
时,求最大的正整数
,使得任意
个实数![]()
![]()
(
是自然对数的底数)都有
成立;
(ⅱ)求证:![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为实常数) .
(1)当
时,求函数
在
上的最大值及相应的
值;
(2)当
时,讨论方程
根的个数.
(3)若
,且对任意的
,都有
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为自然对数的底数),
(
为常数),
是实数集
上的奇函数.
(1)求证:
;
(2)讨论关于
的方程:
的根的个数;
(3)设
,证明:
(
为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com