解:(法一)如图,构造边长为1的正五边形ABCDE,使得
=(cos6°,sin6°),则依次可得
=(cos78°,sin78°),
=(cos150°,sin150°),
=(cos222°,sin222°),
=(cos294°,sin294°),
由于
=
,
所以sin6°+sin78°+sin150°+sin222°+sin294°=0,
从而sin6°+sin78°+sin222°+sin294°=-sin150°=-
.
解2:原式=(sin6°+sin294°)+(sin78°+sin222°)=2sin150°cos144°+2sin150°cos72°=2sin150°(cos144°+cos72°)=2cos108°cos36°=-2sin18°cos36°=-
•cos36°=-
.
分析:法一:由于正五边形内角都是108°,其外角是72°,故各边倾斜角大小相差72°,由此可构造边长为1的正五边形ABCDE,使得
=(cos6°,sin6°),则依次可得
=(cos78°,sin78°),
=(cos150°,sin150°),
=(cos222°,sin222°),
=(cos294°,sin294°),再由向量加法知
=
,由向量的坐标运算可得出sin6°+sin78°+sin222°+sin294°=-sin150°,易求出代数式的值;
法二:由题意,对四个数分为两组,规律是两角和的一半是150°,再由和化积公式,二倍角进行恒等变形,即可求出代数式的值
点评:本题考查向量在几何中的应用,三角函数的恒等变换与化简求值,解法一解题的关键是由题设条件及向量的加法几何意义构造出正五边形模型,此方法巧妙地利用了代数式中各角差是72°,技巧性强,考查了构造的能力及转化的思想.解法二做题的关键是熟练掌握理解三角恒等变换公式,三角函数恒等变换公式较多,熟练记忆才能灵活运用.解题的难点是观察出公式变形的方向,组合出特殊角是变形有效与否的检验标准.