经过点
且与直线
相切的动圆的圆心轨迹为
.点
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且
的面积为20,求直线
的方程.
(1)
;(2)证明过程详见解析;(3)
.
【解析】
试题分析:本题主要考查抛物线、圆、直线的标准方程和几何性质,考查用代数法研究圆锥曲线的性质以及数形结合思想、分类讨论思想.第一问,根据圆与直线相切列出表达式;第二问,把证明角相等转化为证明两个斜率之间的关系;第三问,找直线上的点
的坐标和直线的斜率,本问应用了数形结合思想.
试题解析:(1)设动圆圆心为
,依题意得
.
整理,得
,所以轨迹
的方程为
.(2分)
(2)由(1)得
,即
,则
.
设点
,由导数的几何意义知,直线
的斜率为
,
由题意知点
,设点
,
则
,
即
.
因为
,
,
由于
,即
,
所以
.(6分)
(3)由点
到
的距离等于
,可知
,
![]()
不妨设点
在
上方(如图),即
,直线
的方程为:
.
由
,解得点
的坐标为
,
所以
,
由(2)知
,同理可得
,
所以
的面积
,解得
.
当
时,点
的坐标为
,
,
直线
的方程为
,即
.
当
时,点
的坐标为
,
,
直线
的方程为
,即
. (12分)
考点:1.圆、抛物线、直线的标准方程;2.斜率公式;3.导数的几何意义;4.三角形面积公式.
科目:高中数学 来源: 题型:
经过点
且与直线
相切的动圆的圆心轨迹为
.点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且△
的面积为20,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省广州市毕业班综合测试(二)理科数学试卷(解析版) 题型:解答题
经过点
且与直线
相切的动圆的圆心轨迹为
.点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且△
的面积为20,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省广州市毕业班综合测试(二)文科数学试卷(解析版) 题型:解答题
经过点
且与直线
相切的动圆的圆心轨迹为
.点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且△
的面积为20,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省高三第十次模拟考试理科数学试卷(解析版) 题型:解答题
已知函数
的导数
为实数,
.
(Ⅰ)若
在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点
且与曲线
相切的直线
的方程;
(Ⅲ)设函数
,试判断函数
的极值点个数。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com