精英家教网 > 高中数学 > 题目详情
一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.
(1) 取中点,连,由分别是中点,可设:, ∴面 (2)

试题分析:(1)由三视图知,该多面体是底面为直角三角形的直三棱柱,且,
,∴.     ---2分
中点,连,由分别是中点,可设:,
∴面…          ---8分
(2)作,由于三棱柱为直三棱柱
,
,---12
点评:本题的关键是先由三视图找到直观图中对应的边长及边的垂直关系
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知:正方体中,棱长分别为的中点,的中点,

(1)求证://平面
(2)求:到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.

(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线m,n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是______个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A-BCD是各条棱长都相等的三棱锥.,那么AB和CD所成的角等于_______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平行四边形中,沿折起到的位置,使平面平面

(I)求证:;     
(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD—A1B1C1D1中,E、F分别是AB、B1C的中点,则EF与平面ABCD所成的角的正切值为(  )

A. 2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l,m,平面α,β,且l⊥α,mβ,给出四个命题:(  )
①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;
其中真命题的个数是(  ).
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案