精英家教网 > 高中数学 > 题目详情
抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.
(1)焦点坐标为,准线方程为;(2)证明详见解析;(3).

试题分析:(1)数形结合,依据抛物线的标准方程写出焦点坐标和准线方程;(2)设直线的方程为,直线的方程为,分别联立直线与抛物线的方程消去得到关于的一元二次方程,利用一元二次方程根与系数的关系,得到,再由求出点的横坐标,即可证明;(3)为钝角时,必有,用表示,通过的范围求的范围即可.
试题解析:(1)由抛物线的方程)得,焦点坐标为,准线方程为
(2)证明:设直线的方程为,直线的方程为
和点的坐标是方程组
的解将②式代入①式得,于是,故 ③
又点和点的坐标是方程组
的解将⑤式代入④式得于是,故
由已知得,,则  ⑥
设点的坐标为,由,则
将③式和⑥式代入上式得,即所以线段的中点在轴上
(3)因为点在抛物线上,所以,抛物线方程为
由③式知,代入
代入⑥式得,代入
因此,直线分别与抛物线的交点的坐标为
于是

为钝角且三点互不相同,故必有
求得的取值范围是又点的纵坐标满足,故
时,;当时,.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在双曲线上,且双曲线的一条渐近线的方程是
(1)求双曲线的方程;
(2)若过点且斜率为的直线与双曲线有两个不同交点,求实数的取值范围;
(3)设(2)中直线与双曲线交于两个不同点,若以线段为直径的圆经过坐标原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的焦距为,且过点(),右焦点为.设上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆两点.

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.

(1)求椭圆的方程;
(2)若,过的直线交椭圆于两点,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形.

(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距,.
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.

(1)求p,t的值;
(2)求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(a>b>0)的两个焦点F1F2和上下两个顶点B1B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于EF两点,A为椭圆的右顶点,直线AEAF分别交直线x=3于点MN,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案