精英家教网 > 高中数学 > 题目详情
如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.

(1)求p,t的值;
(2)求△ABP面积的最大值.
(1)    (2)

解:(1)由题意知
(2)由(1)知M(1,1),
直线OM的方程为y=x,

设A(x1,y1),B(x2,y2),线段AB的中点为Q(m,m).
由题意知,
设直线AB的斜率为k(k≠0).

得(y1-y2)(y1+y2)=x1-x2,
故k·2m=1,
所以直线AB的方程为y-m=(x-m),
即x-2my+2m2-m=0.
消去x,
整理得y2-2my+2m2-m=0,
所以Δ=4m-4m2>0,
y1+y2=2m,y1y2=2m2-m.
从而|AB|=·|y1-y2|=·.
设点P到直线AB的距离为d,
则d=.
设△ABP的面积为S,则
S=|AB|·d=|1-2(m-m2)|·.
由Δ=4m-4m2>0,得0<m<1.
令u=,0<u≤,则S=u(1-2u2).
设S(u)=u(1-2u2),0<u≤,则S′(u)=1-6u2.
由S′(u)=0,得u=,
因此S(u)在单调递增,在单调递减,
所以S(u)max=S=.
故△ABP面积的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6,直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C:=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且=3,则双曲线离心率的最小值为(  )
A.B.C.2D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定点,且均不在平面上,动点在平面上,且,则点的轨迹为(  )
A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(a>b>0)的右焦点为F,过原点和x轴不重合的直线与椭圆E相交于AB两点,且|AF|+|BF|=2,|AB|的最小值为2.
(1)求椭圆E的方程;
(2)若圆x2y2的切线L与椭圆E相交于PQ两点,当PQ两点横坐标不相等时,OP(O为坐标原点)与OQ是否垂直?若垂直,请给出证明;若不垂直,请说明理由.

查看答案和解析>>

同步练习册答案