精英家教网 > 高中数学 > 题目详情
(2013•绍兴一模)函数f(x)=sin2x-cos2x在下列哪个区间上单调递增(  )
分析:将函数解析式利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,然后根据正弦函数在[-
π
2
+2kπ,
π
2
+2kπ]
π
2
]上单调递增列出关于x的不等式,求出不等式的解集得到x的范围.
解答:解:函数f(x)=sin2x-cos2x=
2
sin(2x-
π
4

由正弦函数在[-
π
2
+2kπ,
π
2
+2kπ]上单调递增
所以-
π
2
+2kπ≤2x-
π
4
π
2
+2kπ
解得:-
π
8
+kπ≤x≤
8
+kπ
则f(x)在[-
π
8
8
]上单调递增.
故选:B.
点评:本题主要考查两角和的余弦公式的应用,正弦函数的单调增区间,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绍兴一模)如图,在△ABC中,B=
π
3
,BC=2
,点D在边AB上,AD=DC,DE⊥AC,E为垂足
(1)若△BCD的面积为
3
3
,求CD的长;
(2)若DE=
6
2
,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绍兴一模)设全集U={x|x>0},集合M={x|x-3>0},则?UM=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绍兴一模)设等差数列{an}的前n项和为Sn,若a2+S3=-4,a4=3,则公差为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绍兴一模)若a,b∈R,则“a>0,b>0”是“a+b>0”的(  )

查看答案和解析>>

同步练习册答案