精英家教网 > 高中数学 > 题目详情
9.设实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤3\\ 2x+y≤4\end{array}\right.$则z=3x+2y的最大值是7.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤3\\ 2x+y≤4\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+y=3}\\{2x+y=4}\end{array}\right.$,解得x=1,y=2.
即B(1,2).
化目标函数z=3x+2y为$y=-\frac{3}{2}x+\frac{z}{2}$,
由图可知,当直线$y=-\frac{3}{2}x+\frac{z}{2}$过B(1,2)时,
直线在y轴上的截距最大,z有最大值为3×1+2×2=7.
故答案为:7.

点评 本题考查基地的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.与函数y=elnx的图象相同的一个函数是(  )
A.y=xB.y=exC.y=|x|D.y=(x${\;}^{\frac{1}{2}}$)-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$α∈(0,\frac{π}{2})$,方程x2sin2α+y2cos2α=1表示焦点在y轴上的椭圆的条件下长半轴长不小于2的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面区域D:|a+2|+|b-2|≤2上任取一点(a,b),则有序实数对(a,b)满足一元二次方程ax2+bx+2=0有一根在(-1,0),另一根在(1,2)条件的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=-x2+2bx-4与$g(x)=\frac{b}{x+1}$在区间[1,2]上都是减函数,则实数b的取值范围是(  )
A.(0,1)B.(0,1]C.(-1,0)∪(0,1)D.(-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某校在一次学生演讲比赛中,共有7个评委,学生最后得分为去掉一个最高分和一个最低分的平均分.某学生所得分数为9.6,9.4,9.6,9.7,9.7,9.5,9.6,这组数据的众数是9.6,学生最后得分为9.6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=2n+3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求函数$f(x)=\frac{{\sqrt{4-x}}}{x-1}$的定义域;
(2)求函数y=-x2-6x+7的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.命题p:在f(x)=-x2+2ax+1-a,x∈[0,1]时的最大值不超过2,命题q:正数x,y满足x+2y=8,且a≤$\frac{2}{x}$+$\frac{1}{y}$恒成立.若p∨¬q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案