精英家教网 > 高中数学 > 题目详情
19.命题p:在f(x)=-x2+2ax+1-a,x∈[0,1]时的最大值不超过2,命题q:正数x,y满足x+2y=8,且a≤$\frac{2}{x}$+$\frac{1}{y}$恒成立.若p∨¬q为假命题,求实数a的取值范围.

分析 先求出关于p,q为真时的a的范围,根据p∨¬q为假命题,得到p假q真,得到关于a的不等式组,解出即可.

解答 解:关于命题p:f(x)=-x2+2ax+1-a,
函数f(x)的对称轴是:x=a,
①a≥1时:f(x)在[0,1]递增,f(x)max=f(1)=-1+2a+1-a=a≤2,故1≤a≤2;
②0<a<1时:f(x)在(0,a)递增,在(a,1)递减,
∴f(x)max=f(a)=a2-a+1≤2,解得:$\frac{1-\sqrt{5}}{2}$≤a≤$\frac{1+\sqrt{5}}{2}$,
∴0<a<1;
③a≤0时:f(x)在[0,1]递减,
∴f(x)max=f(0)=1-a≤2,解得:a≥-1,即-1≤a≤0;
综合①②③得:a∈[-1,2];
命题q:正数x,y满足x+2y=8,则$\frac{x}{8}$+$\frac{y}{4}$=1,
∴$\frac{2}{x}$+$\frac{1}{y}$=($\frac{2}{x}$+$\frac{1}{y}$)($\frac{x}{8}$+$\frac{y}{4}$)=$\frac{1}{2}$+$\frac{y}{2x}$+$\frac{x}{8y}$≥$\frac{1}{2}$+2$\sqrt{\frac{y}{2x}•\frac{x}{8y}}$=1,
∴a≤1,即a∈(-∞,1];
若p∨¬q为假命题,则p假q真                                           
∴$\left\{\begin{array}{l}{a<-1或a>2}\\{a≤1}\end{array}\right.$,解得:a<-1.

点评 本题考查了复合命题的判断,考查二次函数的最值问题,基本不等式的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤3\\ 2x+y≤4\end{array}\right.$则z=3x+2y的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边经过点(-3,4),则$sin({α+\frac{π}{4}})$的值(  )
A.$\frac{\sqrt{2}}{5}$B.-$\frac{\sqrt{2}}{5}$C.$\frac{\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.根据历年气象资料统计,蚌埠地区五月份刮东风的概率是$\frac{4}{15}$,既刮东风又下雨的概率是$\frac{7}{30}$,那么在“五月份刮东风”的条件下,蚌埠地区五月份下雨的概率是(  )
A.$\frac{1}{30}$B.$\frac{1}{2}$C.$\frac{56}{900}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,它们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)(方块4用4′表示)分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;
(2)甲、乙约定,若甲抽到的牌的牌面数字比乙的大,则甲胜,乙负,此游戏是否公平?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a、b、c是不为零的实数,那么x=$\frac{a}{|a|}$+$\frac{|b|}{b}$-$\frac{c}{|c|}$的值有(  )
A.3种B.4种C.5种D.6种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数y=f(x)的对称轴为x=1,且f(0)=6,f(-1)=12.
(1)求f(x)的解析式;
(2)若函数f(x)的定义域为[m,m+1],f(x)的值域为[12,22],求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x||x-1|>x-1},B={y|y=lnx},则A∩B=(  )
A.{x|0<x<1}B.{x|x<1}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=cos2x+2sinxcosx,则下列说法正确的是(  )
A.若f(x1)=f(x2),则x1-x2=kπ,k∈Z
B.f(x)的图象关于点($-\frac{3}{8}π$,0)对称
C.f(x)的图象关于直线$x=\frac{5}{8}π$对称
D.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$

查看答案和解析>>

同步练习册答案