精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,△ABD、△ACD、△ABC都全等,且AB=AC=,BC=2,求二面角A-BC-D的大小.

思路点拨:本题要求二面角,首先根据二面角的平面角的定义构造出对应的二面角的平面角,结合已知条件中出现的线段相等,容易想到添加中点,从而得到相关的垂直关系而达到目的.

解:取BC的中点E,连结AE、DE.

∵AB=AC,∴AE⊥BC.

又△ABD≌△DBC,AB=AC,

∴DB=DC,DE⊥BC.

∴∠AED为二面角ABCD的平面角.

又△ABC≌△DBC,且△ABC是以BC为底的等腰三角形,△DBC也是以BC为底的等腰三角形,所以AB=AC=DB=DC=.

又△ABD≌△BDC,∴AD=BC=2.

在Rt△DEB中,DB=,BE=1,

∴DE=.

同理,AE=.

在△AED中,AE=DE=,AD=2,AD2+DE2=AD2,∠AED=90°,即二面角ABCD的大小为90°.

[一通百通] 有关求二面角的平面角问题的求解,通常考虑根据二面角的平面角的定义构造出相应的平面角,而在构造过程中,往往离不开添加垂线,利用线面垂直、面面垂直关系从而达到目的,最后问题通常转化为解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC⊥面ACD,DA=DC,E、F分别为AB、AC的中点.
(1)求证:直线EF∥面BCD;
(2)求证:面DEF⊥面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武汉模拟)如图,在四面体A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小为60°.
(1)求证:平面ABC上平面BCD;
(2)求直线CD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四面体ABCD中,DA=DB=DC=1,且DA,DB,DC两两互相垂直,点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与BC所成角的余弦值的取值范围是(  )
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步练习册答案