精英家教网 > 高中数学 > 题目详情
化简下列式子:其结果为零向量的个数是(  )
AB
+
BC
+
CA
;     
AB
-
AC
+
BD
-
CD

OA
-
OD
+
AD
;       
NQ
+
QP
+
MN
-
MP
A、1B、2C、3D、4
考点:向量的加法及其几何意义
专题:平面向量及应用
分析:根据向量的加法的法则,计算即可.
解答: 解:①
AB
+
BC
+
CA
=
AC
+
CA
=
0

AB
-
AC
+
BD
-
CD
=
CB
+
BD
-
CD
=
CD
-
CD
=
0

OA
-
OD
+
AD
=
DA
+
AD
=
0

NQ
+
QP
+
MN
-
MP
=
NP
+
PN
=
0

故选D.
点评:本题主要考查了向量的加法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α、β是两个不同的平面.下列四个命题正确的是(  )
A、若m?α,α∥β,则m∥β
B、若m、n?α,m∥β,n∥β,则α∥β
C、若m⊥α,α⊥β,n∥β,则m⊥n
D、若α⊥γ,β⊥γ,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)在[a,b]上连续,将[a,b]n等分,在每个小区间上任取ξi,则
b
a
f(x)dx=(  )
A、
lim
n→∞
n
i=1
f(ξi
B、
lim
n→∞
n
i=1
f(ξi)•
b-a
n
C、
lim
n→∞
n
i=1
f(ξi)•ξi
D、
lim
n→∞
n
i=1
f(ξi)•(ξii-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线
x
a
+
y
b
=1(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则ab的取值范围是(  )
A、(-∞,
1
8
]
B、(0,
1
8
]
C、(0,8]
D、[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1:y=
1
2
ex关于直线y=x对称得曲线C2,动点P在C1上,动点Q在C2上,则|PQ|最小值为(  )
A、1-ln2
B、
2
(1-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数满足f(x)=2x-4(x≥0),则{x|f(x)>0}=(  )
A、{x|x<-2或x>4}
B、{x|x<0或x>4}
C、{x|x<-2或x>2}
D、{x<0或x>6}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是(  )
A、不论边长AB,BC如何变化,P为定值
B、若
AB
BC
的值越大,P越大
C、当且仅当AB=BC时,P最大
D、当且仅当AB=BC时,P最小

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的个数为(  )
(1)命题“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0”
(2)函数y=sin(x-
π
2
)在[0,π]上为减函数
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“an+12=anan+2”的充要条件
(4)已知函数f(x)=lgx+
1
lgx
,则函数f(x)的最小值为2.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈N,a≠b,且a2-b2=a3-b3,比较a+b,1,
4
3
大小.

查看答案和解析>>

同步练习册答案