精英家教网 > 高中数学 > 题目详情
若椭圆的两焦点是,,且该椭圆过点,则该椭圆的标准方程是_______________
依题意可得,椭圆的焦点在轴上且。因为椭圆过点,根据椭圆几何性质有,则,所以,故椭圆的标准方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在坐标原点,长轴端点为A,B,右焦点为F,且.
(I) 求椭圆的标准方程;
(II)过椭圆的右焦点F作直线,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且,求四边形MPNQ的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的点,以为圆心的圆与轴相切于椭
圆的焦点,圆轴相交于两点.若为锐角三角形,则椭圆的离心率
的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率,右焦点到直线的距离为,过的直线交椭圆于两点.(Ⅰ) 求椭圆的方程;(Ⅱ) 若直线轴于,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分) 已知抛物线,顶点为O,动直线与抛物
线交于两点
(I)求证:是一个与无关的常数;
(II)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若,则___.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点F恰好是椭圆的右焦点,且两条曲线交点的连线过点F,则该椭圆的离心率为____________.

查看答案和解析>>

同步练习册答案