精英家教网 > 高中数学 > 题目详情
9.化简:
(1)sin2xcosx-cos2xsinx;
(2)sin(α-β)cosβ+cos(α-β)sinβ;
(3)sin(α+β)cos(α-β)+sin(α-β)cos(α+β);
(4)$\frac{sin(α+β)+sin(α-β)}{cosαcosβ}$.

分析 (1)直接利用两角差的正弦得答案;
(2)直接利用两角和的正弦得答案;
(3)直接利用两角和的正弦得答案;
(4)展开两角和与差的正弦,合并同类项后由商的关系得答案.

解答 解:(1)sin2xcosx-cos2xsinx=sin(2x-x)=sinx;
(2)sin(α-β)cosβ+cos(α-β)sinβ=sin[(α-β)+β]=sinα;
(3)sin(α+β)cos(α-β)+sin(α-β)cos(α+β)=sin[(α+β)+(α-β)]=sin2α;
(4)$\frac{sin(α+β)+sin(α-β)}{cosαcosβ}$=$\frac{sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ}{cosαcosβ}$=$\frac{2sinαcosβ}{cosαcosβ}=2tanα$.

点评 本题考查三角函数中的恒等变换应用,考查两角和差的正弦、余弦公式、记熟这些公式是迅速解题的关键,同时注意角的变换,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数y=x${\;}^{(-1)^{p}\frac{n}{m}}$(m,n,p∈N,且m,n互质)的图象关于原点对称,且不经过原点,则m,n,p应满足的条件是m是奇数、n是偶数或m、n都是奇数,且p为奇数(m,n,p∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是(10,$\frac{1}{2}$),则该随机变量的方差等于(  )
A.10B.100C.$\frac{2}{π}$D.$\sqrt{\frac{2}{π}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数f(x)=$\frac{{x}^{2}+a}{x+1}$的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若a,b为不等于1的正数,且a<b,试比较logab、loga$\frac{1}{b}$、logb$\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)log233×log3$\sqrt{4}$;
(2)(2a-3b${\;}^{-\frac{2}{3}}$)(-3a-1b)÷(4a-4b${\;}^{-\frac{5}{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若(a+$\sqrt{a}$)n的展开式,奇数项的系数和等于512,求第8项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值域:
(1)y=loga(2-ax-a2x
(2)y=loga(a-ax).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{3x+2}{5-4x}$的值域为{y|y≠-$\frac{3}{4}$}.

查看答案和解析>>

同步练习册答案