精英家教网 > 高中数学 > 题目详情
14.计算下列各式的值:
(1)log233×log3$\sqrt{4}$;
(2)(2a-3b${\;}^{-\frac{2}{3}}$)(-3a-1b)÷(4a-4b${\;}^{-\frac{5}{3}}$).

分析 (1)根据对数的运算法则进行化简.
(2)根据指数幂的运算法则进行化简.

解答 解:(1)log233×log3$\sqrt{4}$=3log23×log32=3;
(2)(2a-3b${\;}^{-\frac{2}{3}}$)(-3a-1b)÷(4a-4b${\;}^{-\frac{5}{3}}$)=-$\frac{3}{2}$a-3-1+4$•{b}^{-\frac{2}{3}+1+\frac{5}{3}}$=-$\frac{3}{2}$a0•b2=-$\frac{3}{2}$b2

点评 本题主要考查对数式和指数幂的化简,根据相应的对应法则是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.以A(3,-5)为圆心,并且与直线x-7y+2=0相切的圆的方程为(x-3)2+(y+5)2=32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,①若直线y=x+b与圆x2+y2=4相切,即圆x2+y2=4上恰有一个点到直线y=x+b的距离为0,则b的值为$±2\sqrt{2}$;②若将①中的“圆x2+y2=4”改为“曲线x=$\sqrt{4-{y}^{2}}$”,将“恰有一个点”改为“恰有三个点”,将“距离为0”改为“距离为1”,即若曲线x=$\sqrt{4-{y}^{2}}$上恰有三个点到直线y=x+b的距离为1,则b的取值范围是(-$\sqrt{2}$,$\sqrt{2}$-2]..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=-$\frac{4}{3}$,则tan$\frac{α}{2}$的值为2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:
(1)sin2xcosx-cos2xsinx;
(2)sin(α-β)cosβ+cos(α-β)sinβ;
(3)sin(α+β)cos(α-β)+sin(α-β)cos(α+β);
(4)$\frac{sin(α+β)+sin(α-β)}{cosαcosβ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(2x-1)7展开式中第4项的二项式系数为35,第4项系数为-560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设M={a,b,c},N={-1,0,1}.
(1)求从M到N的映射的个数;
(2)从M到N的映射满足f(a)+f(b)+f(c)=0,试确定这样的映射f的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)是周期为π的函数,当-$\frac{π}{2}$≤x<$\frac{π}{2}$时,f(x)=1-cosx,若方程f(x)-kx=0至少有5个根,则k的取值范围是(  )
A.[0,$\frac{2}{3π}$)B.[0,$\frac{2}{3π}$]C.(-$\frac{2}{3π}$,$\frac{2}{3π}$)D.[-$\frac{2}{3π}$,$\frac{2}{3π}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列给出了四个函数,把其中的周期函数的标号全部填在横线上②③
①y=sinx,x∈[0,2π]②y=3 ③y=|sinx|+3 ④y=sin|x|

查看答案和解析>>

同步练习册答案