精英家教网 > 高中数学 > 题目详情
4.下列给出了四个函数,把其中的周期函数的标号全部填在横线上②③
①y=sinx,x∈[0,2π]②y=3 ③y=|sinx|+3 ④y=sin|x|

分析 根据周期函数的定义,及函数图象的变换法则,分析综合四个函数的周期性,综合可得答案.

解答 解:①中函数:y=sinx,x∈[0,2π],不是周期函数(注意定义域受限制);
②中函数:y=3 是周期函数,周期为任意实数;
③中函数:y=|sinx|+3是周期函数,周期为π;
④中函数:y=sin|x|不是周期函数(其图象关于y轴对称);
故答案为:②③

点评 本题考查的知识点是函数的周期性,正确理解并熟练掌握函数周期性的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)log233×log3$\sqrt{4}$;
(2)(2a-3b${\;}^{-\frac{2}{3}}$)(-3a-1b)÷(4a-4b${\;}^{-\frac{5}{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,且a≠1,f(x)=$\frac{1}{1{-a}^{x}}$-$\frac{1}{2}$,则f(x)是奇函数(填“奇函数”或“偶函数”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x,xy,x-y},集合B={0,|x|,y},若A=B,求实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{3x+2}{5-4x}$的值域为{y|y≠-$\frac{3}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为I,若对任意的x1,x2∈I.都有|f(x1)-f(x2)|<1,则成函数f(x)为“Storm函数”,现给出下列函数:
①f(x)=|x|,x∈[-$\frac{1}{2}$,1];②f(x)=22x,x∈(0,1);③f(x)=lnx,x∈[2,4],则其中“Storm函数”的是③(填写符合要求的函数式所对应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解方程组$\left\{\begin{array}{l}{2x-3y=1}\\{2{x}^{2}-3xy+{y}^{2}-4x+3y-3=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知M={x|x2-3x+2=0},N={x|x2-2x+a=0},若N⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
数学888311792108100112
物理949110896104101106
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;
(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
(已知88×94+83×91+117×108+92×96+108×104+100×101+112×106=70497,882+832+1172+922+1082+1002+1122=70994)
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}^{2}-n{x}^{-2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案