精英家教网 > 高中数学 > 题目详情
12.已知集合A={x,xy,x-y},集合B={0,|x|,y},若A=B,求实数x,y的值.

分析 根据集合相等,对应元素相同解答.

解答 解:∵0∈B,A=B,
∴0∈A,又由集合中元素的互异性,可以确定|x|≠0,y≠0,
∴x≠0,xy≠0,
∴x-y=0,即x=y.
此时A={x,x2,0},集合B={0,|x|,x},
∴x2=|x|,当x=1时,x2=1与元素互异性矛盾,
∴x=-1,
∴x=y=-1.

点评 本题考查的知识点是集合相等的定义,其中易忽略集合元素的互异性,而产生增根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知tanα=-$\frac{4}{3}$,则tan$\frac{α}{2}$的值为2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)是周期为π的函数,当-$\frac{π}{2}$≤x<$\frac{π}{2}$时,f(x)=1-cosx,若方程f(x)-kx=0至少有5个根,则k的取值范围是(  )
A.[0,$\frac{2}{3π}$)B.[0,$\frac{2}{3π}$]C.(-$\frac{2}{3π}$,$\frac{2}{3π}$)D.[-$\frac{2}{3π}$,$\frac{2}{3π}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,已知a2=3,S5=25.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=x${\;}^{{a}_{n}}$(其中x为常数),求数列{bn}的前n项和Tn
(3)设数列bn=2${\;}^{{a}_{n}}$,设Gn=a1b1+a2b2+…+anbn ,求Gn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值.
(1)(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0
(2)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;
(3)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}{a}^{-\frac{1}{3}}{b}^{\frac{1}{3}}}$(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ=$\frac{3}{5}$,$\frac{5π}{2}$<θ<3π,那么tan$\frac{θ}{2}$+cos$\frac{θ}{2}$的值为(  )
A.$\frac{\sqrt{10}}{10}$-3B.3-$\frac{\sqrt{10}}{10}$C.-3-$\frac{\sqrt{10}}{10}$D.3+$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列给出了四个函数,把其中的周期函数的标号全部填在横线上②③
①y=sinx,x∈[0,2π]②y=3 ③y=|sinx|+3 ④y=sin|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(msinα,-mcosα)和B(mcosα,msinα),则以A,B,O(坐标原点)为顶点的三角形是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{xlnx}{x+1}$和g(x)=m(x-1)(m∈R)
(Ⅰ)m=1时,求方程f(x)=g(x)的实根;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤g(x)恒成立,求m的取值范围;
(Ⅲ)求证:$\sum_{i=1}^{1007}$$\frac{4i}{4{i}^{2}-1}$>ln2015.

查看答案和解析>>

同步练习册答案