£¨2010•ÉϺ££©ÔÚƽÃæÉÏ£¬¸ø¶¨·ÇÁãÏòÁ¿
b
£¬¶ÔÈÎÒâÏòÁ¿
a
£¬¶¨Òå
a¡ä
=
a
-
2(
a
b
)
|
b
|2
b
£®
£¨1£©Èô
a
=£¨2£¬3£©£¬
b
=£¨-1£¬3£©£¬Çó
a¡ä
£»
£¨2£©Èô
b
=£¨2£¬1£©£¬Ö¤Ã÷£ºÈôλÖÃÏòÁ¿
a
µÄÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ£¬ÔòλÖÃÏòÁ¿
a¡ä
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©ÒÑÖª´æÔÚµ¥Î»ÏòÁ¿
b
£¬µ±Î»ÖÃÏòÁ¿
a
µÄÖÕµãÔÚÅ×ÎïÏßC£ºx2=yÉÏʱ£¬Î»ÖÃÏòÁ¿
a¡ä
ÖÕµã×ÜÔÚÅ×ÎïÏßC¡ä£ºy2=xÉÏ£¬ÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÎÊÖ±ÏßlÓëÏòÁ¿
b
Âú×ãʲô¹Øϵ£¿
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬Ëã³ö
a
b
=7£¬
|b|
2
=10£¬´úÈë
a¡ä
µÄ±í´ïʽ²¢»¯¼òÕûÀí£¬¼´¿ÉµÃµ½
a¡ä
=£¨
17
5
£¬-
6
5
£©£»
£¨2£©Éè
a
=£¨x'£¬y'£©£¬ÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ£¬ÓÉÌâÖÐ
a¡ä
µÄ±í´ïʽ½â³ö
a¡ä
=£¨x£¬y£©Âú×ãµÄ¹Øϵʽ£¬´Ó¶øµÃµ½µã
£¨
-3x-4y
5
£¬
-4x+3y
5
£©ÔÚÖ±ÏßAx+By+C=0ÉÏ£¬»¯¼òÕûÀíµÃµ½Ö±Ïߣ¨3A+4B£©x+£¨4A-3B£©y-5C=0£¬ËµÃ÷ÏòÁ¿
a¡ä
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©£©Éè
a
=£¨x£¬y£©£¬µ¥Î»ÏòÁ¿
b
=£¨cos¦È£¬sin¦È£©£¬½â³ö
a¡ä
¹ØÓÚx¡¢yºÍ¦ÈµÄ×ø±êÐÎʽ£¬½áºÏ
a
µÄÖÕµãÔÚÅ×ÎïÏßx2=yÉÏÇÒ
a¡ä
ÖÕµãÔÚÅ×ÎïÏßy2=xÉÏ£¬½¨Á¢¹ØÓÚx¡¢yºÍ¦ÈµÄ·½³Ì£¬»¯¼òÕûÀíµÃµ½
b
=¡À£¨
2
2
£¬
2
2
£©£®ÔÙÓÉÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl£ºy=x¶Ô³Æ£¬Ëã³ölµÄ·½ÏòÏòÁ¿
d
Âú×ã
d
b
=0£¬´Ó¶øµÃµ½Ö±ÏßlÓëÏòÁ¿
b
´¹Ö±£®
½â´ð£º½â£º£¨1£©¡ß
a
=£¨2£¬3£©£¬
b
=£¨-1£¬3£©£¬
¡à
a
b
=7£¬
|b|
2
=10£¬¿ÉµÃ
2(
a
b
)
|
b
|2
b
=
2¡Á7
10
£¨-1£¬3£©=£¨-
7
5
£¬
21
5
£©
Òò´Ë
a¡ä
=
a
-
2(
a
b
)
|
b
|2
b
=£¨2£¬3£©-£¨-
7
5
£¬
21
5
£©=£¨
17
5
£¬-
6
5
£©£»
£¨2£©Éè
a
=£¨x'£¬y'£©£¬ÖÕµãÔÚÖ±ÏßAx+By+C=0ÉÏ
Ëã³ö
a
b
=2x'+y'£¬
|b|
2
=5£¬
2(
a
b
)
|
b
|2
b
=
2(2x¡ä+y¡ä)
5
£¨2£¬1£©=£¨
8x¡ä+4y¡ä
5
£¬
4x¡ä+2y¡ä
5
£©£¬
¡à
a¡ä
=
a
-
2(
a
b
)
|
b
|2
b
=£¨x'£¬y'£©-£¨
8x¡ä+4y¡ä
5
£¬
4x¡ä+2y¡ä
5
£©=£¨
-3x¡ä-4y¡ä
5
£¬
-4x¡ä+3y¡ä
5
£©
Òò´Ë£¬Èô
a¡ä
=£¨x£¬y£©£¬Âú×ã
x=
-3x¡ä-4y¡ä
5
y=
-4x¡ä+3y¡ä
5
£¬µÃµ½
x¡ä=
-3x-4y
5
y¡ä=
-4x+3y
5

¡ßµã£¨
-3x-4y
5
£¬
-4x+3y
5
£©ÔÚÖ±ÏßAx+By+C=0ÉÏ
¡àA¡Á
-3x-4y
5
+B¡Á
-4x+3y
5
+C=0£¬»¯¼òµÃ£¨3A+4B£©x+£¨4A-3B£©y-5C=0£¬
ÓÉA¡¢B²»È«ÎªÁ㣬¿ÉµÃÒÔÉÏ·½³ÌÊÇÒ»ÌõÖ±Ïߵķ½³Ì
¼´ÏòÁ¿
a¡ä
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉÏ£»
£¨3£©¡ß
b
Êǵ¥Î»ÏòÁ¿£¬
¡àÉè
a
=£¨x£¬y£©£¬
b
=£¨cos¦È£¬sin¦È£©£¬¿ÉµÃ
a
b
=xcos¦È+ysin¦È£¬
ËùÒÔ
a¡ä
=
a
-
2(
a
b
)
|
b
|2
b
=
a
-2£¨xcos¦È+ysin¦È£©
b
=£¨-xcos2¦È-ysin2¦È£¬-2xsin2¦È+ycos2¦È£©
¡ß
a
µÄÖÕµãÔÚÅ×ÎïÏßx2=yÉÏ£¬ÇÒ
a¡ä
ÖÕµãÔÚÅ×ÎïÏßy2=xÉÏ£¬
¡à-xcos2¦È-ysin2¦È=£¨-2xsin2¦È+ycos2¦È£©2£¬
»¯¼òÕûÀí£¬Í¨¹ý±È½ÏϵÊý¿ÉµÃcos¦È=
2
2
£¬sin¦È=-
2
2
»òcos¦È=-
2
2
£¬sin¦È=
2
2

¡à
b
=¡À£¨
2
2
£¬
2
2
£©£¬
¡ßÇúÏßCºÍC¡ä¹ØÓÚÖ±Ïßl£ºy=x¶Ô³Æ£¬
¡àlµÄ·½ÏòÏòÁ¿
d
=£¨1£¬1£©£®
¿ÉµÃ
d
b
=0£¬¼´
d
¡Í
b
£¬Òò´ËÖ±ÏßlÓëÏòÁ¿
b
´¹Ö±£®
µãÆÀ£º±¾Ìâ¸ø³öÏòÁ¿µÄ¹Øϵʽ£¬ÇóÖ¤µ±ÏòÁ¿
a
ÖÕµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬ÏòÁ¿
a¡ä
µÄÖÕµãÒ²ÔÚÒ»ÌõÖ±ÏßÉϵÈÎÊÌ⣮×ÅÖØ¿¼²éÁËÏòÁ¿µÄÊýÁ¿»ýÔËËã¡¢ÏòÁ¿µÄ×ø±êÔËËãºÍÇúÏßÓë·½³ÌµÄÌÖÂÛµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ££©ÔÚ£¨2x2+
1x
£©6µÄ¶þÏîÕ¹¿ªÊ½ÖУ¬³£ÊýÏîÊÇ
60
60
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•Îä²ýÇøÄ£Ä⣩ijµ¥Î»Ñ¡Åɼס¢ÒÒ¡¢±ûÈýÈË×é¶Ó²Î¼Ó¡°2010ÉϺ£ÊÀ²©»á֪ʶ¾ºÈü¡±£¬¼×¡¢ÒÒ¡¢±ûÈýÈËÔÚͬʱ»Ø´ðÒ»µÀÎÊÌâʱ£¬ÒÑÖª¼×´ð¶ÔµÄ¸ÅÂÊÊÇ
3
4
£¬¼×¡¢±ûÁ½È˶¼´ð´íµÄ¸ÅÂÊÊÇ
1
12
£¬ÒÒ¡¢±ûÁ½È˶¼´ð¶ÔµÄ¸ÅÂÊÊÇ
1
4
£¬¹æ¶¨Ã¿¶ÓÖ»ÒªÓÐÒ»ÈË´ð¶Ô´ËÌâÔò¼Ç¸Ã¶Ó´ð¶Ô´ËÌ⣮
£¨¢ñ£©Çó¸Ãµ¥Î»´ú±í¶Ó´ð¶Ô´ËÌâµÄ¸ÅÂÊ£»
£¨¢ò£©´Ë´Î¾ºÈü¹æ¶¨Ã¿¶Ó¶¼Òª»Ø´ð10µÀ±Ø´ðÌ⣬ÿµÀÌâ´ð¶ÔµÃ20·Ö£¬´ð´í³ý¸ÃÌâ²»µÃ·ÖÍ⻹Ҫµ¹¿ÛÈ¥10·Ö£®Èô¸Ãµ¥Î»´ú±í¶Ó´ð¶ÔÿµÀÌâµÄ¸ÅÂÊÏàµÈÇһشðÈÎÒ»µÀÌâµÄ¶Ô´í¶Ô»Ø´ðÆäËüÌâûÓÐÓ°Ï죬Çó¸Ãµ¥Î»´ú±í¶Ó±Ø´ðÌâµÃ·ÖµÄÆÚÍû£¨¾«È·µ½1·Ö£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬AHΪBC±ßÉϵĸߣ¬ÔÚÒÔϽáÂÛÖУº
¢Ù
AH
•(
AB
+
BC
)=
AH
AB
£»
¢Ú
AH
AC
=
AH
2
£»
¢Û
AC
AH
|
AH
|
=c•sinB
£»
¢Ü
BC
•(
AC
-
AB
)=b2+c2-2bc•cosA
£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¢Û¢Ü
¢Û¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩Èçͼ£¬ËÄÀâ׶P-ABCDµÄµ×ÃæABCDÊÇƽÐÐËıßÐΣ¬PF¡ÍƽÃæABCD£¬´¹×ãFÔÚADÉÏ£¬ÇÒAF=
1
3
FD£¬FB¡ÍFC£¬FB=FC=2£¬EÊÇBCµÄÖе㣬ËÄÃæÌåP-BCFµÄÌå»ýΪ
8
3
£®
£¨1£©ÇóÒìÃæÖ±ÏßEFºÍPCËù³ÉµÄ½Ç£»
£¨2£©ÇóµãDµ½Æ½ÃæPBFµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸