精英家教网 > 高中数学 > 题目详情
16.命题“?x∈R,x2+x+1>0”的否定为(  )
A.?x∈R,x2+x+1≤0B.?x∉R,x2+x+1≤0
C.?x0∉R,x02+x0+1>0D.?x0∈R,x02+x0+1≤0

分析 根据全称命题的否定是特称命题进行求解.

解答 解:命题为全称命题,则命题的否定是:?x0∈R,x02+x0+1≤0,
故选:D.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数
f′(x)的最小值为-12.
(1)求a,b,c的值;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=x3+ax2+x在R上是增函数,则a的取值范围是-$\sqrt{3}$≤a≤$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ) 数列{an}满足Sn=2n-an,先计算数列的前四项,再归纳猜想通项an
(Ⅱ) 用分析法证明:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为b<c<a(用“<”号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的顶点在坐标原点上,角α的始边与x轴的正半轴重合,并且角α的终边在射线y=-2x(x≤0)上,则cosα=$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,A=$\frac{π}{3}$,∠BAC的角平分线交边BC于点D,则|AD|=$\frac{24}{7}\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若0<x<1,则函数f(x)=x(1-x)的最大值为(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有(  )种.
A.72B.60C.48D.24

查看答案和解析>>

同步练习册答案