精英家教网 > 高中数学 > 题目详情
11.已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为b<c<a(用“<”号表示)

分析 由当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立,得函数为增函数,利用函数的单调性进行比较即可.

解答 解:∵当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立,
∴当x∈(0,+∞)时,函数f(x)为增函数,
∵f(x)是偶函数,
∴f(1)<f(3)<f(4),
即f(1)<f(3)<f(-4),
故b<c<a,
故答案为:b<c<a.

点评 本题主要考查函数值的大小比较,根据条件判断函数的单调性,利用函数奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=1.
(1)若$\overrightarrow a$•$\overrightarrow b$=1,求$\overrightarrow a$与$\overrightarrow b$的夹角.
(2)若$\overrightarrow a$与$\overrightarrow b$的夹角θ为45°,求|$\overrightarrow a$-$\overrightarrow b$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.求曲线y=$\frac{1}{3}{x^3}+x在点({1,\frac{4}{3}})$处的切线方程6x-3y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x3+x的递增区间是(  )
A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}的前n项和Sn满足2Sn=an+1-2n+1+1,n∈N*,且a1=1.又设bn=an+2n
(1)证明:{bn}为等比数列,并求an
(2)证明:$\frac{6}{5}$≤$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$<$\frac{7}{5}$,(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,x2+x+1>0”的否定为(  )
A.?x∈R,x2+x+1≤0B.?x∉R,x2+x+1≤0
C.?x0∉R,x02+x0+1>0D.?x0∈R,x02+x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,$\sqrt{3}tanC-1=\frac{tanB+tanC}{tanA}$,
(1)求角B的值;
(2)若b=3,sinC=2sinA,求边长a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}各项都是正数,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$=n2+3n(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{2}^{n}•{a}_{n}}{n+1}$(n∈N*)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)将点M的极坐标(5,$\frac{2π}{3}$)化成直角坐标.
(2)将点N的直角坐标($-\sqrt{3}$,-1)化成极坐标.

查看答案和解析>>

同步练习册答案