精英家教网 > 高中数学 > 题目详情
从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
(1)矩形的4个顶点;
(2)每个面都是等边三角形的四面体的4个顶点;
(3)每个面都是直角三角形的四面体的4个顶点;
(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确的结论有________个.
4
四边形ABCD适合(1),四面体ACB1D1适合(2),DB1C1D1适合(3),DA1C1D1适合(4),因此正确的结论有4个
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点.
 
(1)证明:四边形BCHG是平行四边形.
(2)C、D、F、E四点是否共面?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l上有两点与平面α的距离相等,则直线l与平面α的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在梯形ABCD中,AB∥CD,AB平面α,CD平面α,则直线CD与平面α内的直线的位置关系可能是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,则下列命题不正确的是 (    )
A.若B.若
C.若,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则    (写出所有正确结论的编号). 
①四面体ABCD每组对棱相互垂直;
②四面体ABCD每个面的面积相等;
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;
④连接四面体ABCD每组对棱中点的线段相互垂直平分;
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.

查看答案和解析>>

同步练习册答案