精英家教网 > 高中数学 > 题目详情
在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.
(1)见解析(2)M为CC1的中点
(1)证明:反证法.假设AP⊥平面BCC1B1
因为BC平面BCC1B1,所以AP⊥BC.
又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP平面ACC1A1,CC1平面ACC1A1,所以BC⊥平面ACC1A1.
而AC平面ACC1A1,所以BC⊥AC,这与△ABC是正三角形矛盾.
故AP不可能与平面BCC1B1垂直.
(2)M为CC1的中点.
证明:∵在正三棱柱ABCA1B1C1中,BC=BB1,∴四边形BCC1B1是正方形.
∵M为CC1的中点,D是BC的中点,∴△B1BD≌△BCM,∴∠BB1D=∠CBM,∠BDB1=∠CMB.
∵∠BB1D+∠BDB1,∠CBM+∠BDB1,∴BM⊥B1D.
∵△ABC是正三角形,D是BC的中点,∴AD⊥BC.
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,AD平面ABC,
∴AD⊥平面BB1C1C.
∵BM平面BB1C1C,∴AD⊥BM.
∵AD∩B1D=D,∴BM⊥平面AB1D.
∵AB1平面AB1D,∴MB⊥AB1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:

(1)求两点间的距离;
(2)证明:平面
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;
(2)用反证法证明:直线ME与BN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.

(1)当平面ADB⊥平面ABC时,求CD.
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,下列说法正确的是________.(填序号)
①存在某个位置,使得直线AC与直线BD垂直;
②存在某个位置,使得直线AB与直线CD垂直;
③存在某个位置,使得直线AD与直线BC垂直;
④对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为△ABC所在平面外一点,O为P在平面ABC内的射影.
(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,则O是△ABC的________心;
(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,bβ;②a∥γ,b∥β;③b∥β,aγ.如果命题“α∩β=a,bγ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
(1)矩形的4个顶点;
(2)每个面都是等边三角形的四面体的4个顶点;
(3)每个面都是直角三角形的四面体的4个顶点;
(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确的结论有________个.

查看答案和解析>>

同步练习册答案