精英家教网 > 高中数学 > 题目详情
如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:

(1)求两点间的距离;
(2)证明:平面
(3)求直线与平面所成角的正弦值.
(1)2;(2)证明详见解析;(3)

试题分析:(1)取的中点,先证得就是二面角的平面角,再在中利用余弦定理即可求得两点间的距离;(2)欲证线面垂直:平面,转化为证明线线垂直:,即可;(3)欲求直线与平面所成角,先结合(1)中的垂直关系作出直线与平面所成角,最后利用直角三角形中的边角关系即可求出所成角的正弦值.
试题解析:(1)取的中点,连接
,得:
就是二面角的平面角,
中,

(2)由
 ,
,  又平面
(3)方法一:由(1)知平面平面
∴平面平面平面平面
,则平面
就是与平面所成的角
方法二:设点到平面的距离为
  
 于是与平面所成角的正弦为
方法三:以所在直线分别为轴,轴和轴建立空间直角坐标系

设平面的法向量为n,则
n, n
,则n, 于是与平面所成角的正弦即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转,得到梯形

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠ABC=90°,DAC中点,(不同于点),延长AEBCF,将△ABD沿BD折起,得到三棱锥,如图2所示.

(1)若MFC的中点,求证:直线//平面
(2)求证:BD
(3)若平面平面,试判断直线与直线CD能否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,,斜边可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.

(1)求证:平面平面
(2)求与平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是圆的直径,点是圆上异于的点,直线 分别为的中点。

(1)记平面与平面的交线为,试判断与平面的位置关系,并加以说明;
(2)设(1)中的直线与圆的另一个交点为,且点满足,记直线
平面所成的角为异面直线所成的锐角为,二面角的大小为
①求证:
②当点为弧的中点时,,求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不同的平面,是一条直线,以下命题:
①若,则;②若,则
③若,则;④若,则.
其中正确命题的个数是
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱的侧棱在下底面的射影平行,若与底面所成角为,且,则的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案