精英家教网 > 高中数学 > 题目详情
如图,在中,,斜边可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.

(1)求证:平面平面
(2)求与平面所成角的最大角的正切值.
(1)见解析(2)

试题分析:(1)利用二面角的定义、线面与面面垂直的判定与性质即可得出;
(2)利用线面角的定义及其含30°角的直角三角形的边角关系即可得出.
试题解析:(1)证明:由题意,,∴是二面角的平面角,又二面角是直二面角,
又∵平面平面
(2)解:由(1)知,,∴∠CDO是CD与平面AOB所成的角,且,当OD最小时,∠CDO最大,这时,OD⊥AB,垂足为D,
CD与平面AOB所成的角最大时的正切值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:

(1)求两点间的距离;
(2)证明:平面
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE∥平面BCP.
(2)求证:四边形DEFG为矩形.
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A—BCD,则在三棱锥A—BCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不同直线和不同平面,给出下列命题:
  ②  ③异面 
 其中错误的命题有(  )个
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示直线,表示不同的平面,则下列命题中正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,则(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为△ABC所在平面外一点,O为P在平面ABC内的射影.
(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,则O是△ABC的________心;
(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.

查看答案和解析>>

同步练习册答案