精英家教网 > 高中数学 > 题目详情
如图1,在Rt△ABC中,∠ABC=90°,DAC中点,(不同于点),延长AEBCF,将△ABD沿BD折起,得到三棱锥,如图2所示.

(1)若MFC的中点,求证:直线//平面
(2)求证:BD
(3)若平面平面,试判断直线与直线CD能否垂直?并说明理由.
(1)详见解析,(2)详见解析,(3)不能垂直.

试题分析:(1)折叠问题注意折叠前后直线平行与垂直关系是否变化,若不变,则成为隐含条件.本题中,折叠前,分别为中点,所以//,且折叠后仍不变,这就是证线面平行的关键条件.应用线面平行判定定理证明时,需写全定理所需全部条件.(2)同样,折叠前,折叠后这一条件对应变化为,由线面垂直判定定理可证结论.注意必须交代是平面中两条相交直线.(3)判断直线与直线CD能否垂直,从假设垂直出发比较好推理论证.若直线与直线CD垂直,又由可得,即有因而可推得,即有,又在同一平面内,所以重合,这与题意矛盾.
试题解析:解:
(1)因为,分别为中点,所以//          2分

所以.           4分
(2)因为
所以      7分

所以            9分
(3)直线与直线不能垂直                   10分
因为,,,

所以.                   12分
因为,所以
又因为,所以.
假设
因为
所以,                     13分
所以
这与为锐角矛盾
所以直线与直线不能垂直.                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,底面

(1)证明:
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD与四边形都为正方形,,F
为线段的中点,E为线段BC上的动点.

(1)当E为线段BC中点时,求证:平面AEF;
(2)求证:平面AEF平面;
(3)设,写出为何值时MF⊥平面AEF(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:

(1)求两点间的距离;
(2)证明:平面
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面为矩形,的中点.

(1)求证:
(2)在线段上是否存在一点,使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形沿对角线折成直二面角,有如下四个结论:
;②△是等边三角形;③与平面所成的角为60°;
所成的角为60°.其中错误的结论是
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,下列说法正确的是________.(填序号)
①存在某个位置,使得直线AC与直线BD垂直;
②存在某个位置,使得直线AB与直线CD垂直;
③存在某个位置,使得直线AD与直线BC垂直;
④对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直.

查看答案和解析>>

同步练习册答案