精英家教网 > 高中数学 > 题目详情
如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.

(1)当平面ADB⊥平面ABC时,求CD.
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
(1)2   (2)见解析
(1)取AB的中点E,
连接DE,CE,

因为△ADB是等边三角形,
所以DE⊥AB.
当平面ADB⊥平面ABC时,
因为平面ADB∩平面ABC=AB,
所以DE⊥平面ABC,可知DE⊥CE.
由已知可得DE=,EC=1,
在Rt△DEC中,CD==2.
(2)当△ADB以AB为轴转动时,总有AB⊥CD.
证明:
①当D在平面ABC内时,
因为AC=BC,AD=BD,
所以C,D都在线段AB的垂直平分线上,即AB⊥CD.
②当D不在平面ABC内时,
由(1)知AB⊥DE.
又因AC=BC,所以AB⊥CE.
又DE,CE为相交直线,所以AB⊥平面CDE.
由CD?平面CDE,得AB⊥CD.
综上所述,总有AB⊥CD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,

求证:GM∥平面ABFE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,PA⊥底面ABCDACCD,∠DAC=60°,ABBCACEPD的中点,FED的中点.
 
(1)求证:平面PAC⊥平面PCD
(2)求证:CF∥平面BAE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,则下列命题不正确的是 (    )
A.若B.若
C.若,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则    (写出所有正确结论的编号). 
①四面体ABCD每组对棱相互垂直;
②四面体ABCD每个面的面积相等;
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;
④连接四面体ABCD每组对棱中点的线段相互垂直平分;
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则(  )
A.n⊥βB.n∥β
C.n⊥αD.n∥α或n?α

查看答案和解析>>

同步练习册答案