精英家教网 > 高中数学 > 题目详情
4.已知函数y=2x-3-$\sqrt{a-4x}$的值域为(-∞,$\frac{7}{2}$],则实数a的值为13.

分析 由题意易得x=$\frac{a}{4}$时y=$\frac{7}{2}$,解关于a的方程可得.

解答 解:由题意可得a-4x≥0可得x≤$\frac{a}{4}$,
由复合函数的单调性可得y=2x-3-$\sqrt{a-4x}$单调递增,
∴当x=$\frac{a}{4}$时,y=$\frac{a}{2}$-3=$\frac{7}{2}$,解得a=13
故答案为:13

点评 本题考查函数的值域,涉及复合函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.f(x)=-2x2+4x-3的增区间为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知|$\overrightarrow{a}$|=3,$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$=($\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$)或(-$\frac{6\sqrt{5}}{5}$,$\frac{3\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lgx的根的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$,判断f(x)的奇偶性,单调性,并求出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|x=$\frac{k}{3}$,k∈Z},B={x|x=$\frac{k}{6}$,k∈Z},则(  )
A.A$\underset{?}{≠}$BB.A$\underset{?}{≠}$BC.A=BD.A与B无公共元素

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在锐角三角形ABC中,α+$\frac{π}{3}$的终边经过点P(sinB-cosA,cosB-sinA),且sin(α+$\frac{π}{3}$)=-$\frac{2\sqrt{2}}{3}$,则sin($\frac{2015π}{2}$+α)的值为(  )
A.$\frac{2\sqrt{6}-1}{6}$B.$\frac{1-2\sqrt{6}}{6}$C.$\frac{\sqrt{3}+2\sqrt{2}}{6}$D.$\frac{\sqrt{3}-2\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$在平面直角坐标系中所表示的区域的面积为S,则当k>1时,$\frac{kS}{k-1}$的最小值为(  )
A.16B.32C.48D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在?ABCD中,点E是AB的中点,点F在BD上,且BF=$\frac{1}{3}$BD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{EC}$,$\overrightarrow{EF}$;
(2)求证:E,F,C三点共线.

查看答案和解析>>

同步练习册答案