精英家教网 > 高中数学 > 题目详情
某射手每次射击击中目标的概率均为,且每次射击的结果互不影响
(I)假设这名射手射击3次,求至少2次击中目标的概率
(II)假设这名射手射击3次,每次击中目标10分,未击中目标得0分,在3次射击中,若有两次连续击中目标,而另外一次未击中目标,则额外加5分;若3次全部击中,则额外加10分。用随机变量§表示射手射击3次后的总得分,求§的分布列和数学期望。
(I)
(II)故的分布列是

0
10
20
25
40







试题分析:解:⑴设为射手3次射击击中目标的总次数,则.
,
所以所求概率为.
⑵由题意可知,的所有可能取值为,
表示事件“第次击中目标”,




.
的分布列是

0
10
20
25
40






.
点评:本题主要考查n次独立重复实验中恰好发生k次的概率,离散型随机变量的数学期望的求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;
(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知随机变量XN(1,4)且P(X<2)=0.72,则P(1<X<2)等于(  ).
A.0.36 B.0.16 C.0.22D.0.28

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从分别写有的五张卡片中任取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间
第一天
第二天
第三天
第四天
温差(℃)
9
10
8
11
发芽数(粒)
33
39
26
46
(1)求这四天浸泡种子的平均发芽率;
(2)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),则以(m,n)的形式列出所有的基本事件,并求“m,n满足”的事件A的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间内随机取个实数,则直线,直线轴围成的面积大于的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下图是某游戏中使用的材质均匀的圆形转盘,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面积各占转盘面积的.游戏规则如下:

① 当指针指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分时,分别获得积分100分,40分,10分,0分;
② (ⅰ)若参加该游戏转一次转盘获得的积分不是40分,则按①获得相应的积分,游戏结束;
(ⅱ)若参加该游戏转一次获得的积分是40分,则用抛一枚质地均匀的硬币的方法来决定是否继续游戏.正面向上时,游戏结束;反面向上时,再转一次转盘,若再转一次的积分不高于40分,则最终积分为0分,否则最终积分为100分,游戏结束.
设某人参加该游戏一次所获积分为
(1)求的概率;
(2)求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求数学期望E ( X ).

查看答案和解析>>

同步练习册答案