精英家教网 > 高中数学 > 题目详情

在△ABC中,a,b,c分别是角A,B,C所对的边,bcosA=acosB,试判断△ABC三角形的形状.

解:方法1:利用余弦定理将角化为边.
∵bcosA=acosB
∴b•=a•
∴b2+c2-a2=a2+c2-b2
∴a2=b2
∴a=b
故此三角形是等腰三角形.
方法2:利用正弦定理将边转化为角.
∵bcosA=acosB 又b=2RsinB,a=2RsinA
∴2RsinBcosA=2RsinAcosB
∴sinAcosB-cosAsinB=0
∴sin(A-B)=0
∵0<A,B<π,
∴-π<A-B<π
∴A-B=0,
即A=B故三角形是等腰三角形.
分析:方法1:利用余弦定理将角化为边;整理得到a=b即可得到结论;
方法2:利用正弦定理将边转化为角,整理后结合角的范围得到A-B=0即可得出结论.
点评:本题考查了三角形的形状判断,涉及的知识有正余弦定理,两角和与差的正弦函数公式,以及正弦函数的图象与性质,根据三角函数值求角的大小,方法二:推出sin(A-B)=0 是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案