精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
4
-
y2
2
=1
(1)过M(1,1)的直线交双曲线于A,B两点,若M 为AB的中点,求直线AB的方程.
(2)是否存在直线L,使N(1,
1
2
)为L被双曲线所截弦的中点,若存在,求出L的方程,若不存在,说明理由.
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)设过M(1,1)的直线方程为:y-1=k(x-1),A,B两点的坐标为(x1,y1),(x2,y2),代入双曲线方程,再相减,运用平方差公式和中点坐标公式,及斜率公式,即可得到所求直线的斜率,进而得到直线方程,检验判别式即可;
(2)假设存在直线l,使N(1,
1
2
)为l被双曲线所截弦的中点,则设弦CD的C、D两点的坐标为(x3,y3),(x4,y4),代入双曲线方程,再相减,运用平方差公式和中点坐标公式,及斜率公式,即可得到所求直线的斜率,进而得到直线方程,检验判别式的符号即可判断.
解答: 解:(1)设过M(1,1)的直线方程为:y-1=k(x-1),
A,B两点的坐标为(x1,y1),(x2,y2),
则x12-2y12=4,x22-2y22=4,
相减可得,(x1-x2)(x1+x2)=2(y1-y2)(y1+y2
由M为AB的中点,则x1+x2=2,y1+y2=2,
则k=
y1-y2
x1-x2
=
1
2

即有直线AB的方程:y-1=
1
2
(x-1),即有y=
1
2
x+
1
2

代入双曲线方程x2-2y2=4,检验判别式大于0,成立,
则所求直线方程为:有y=
1
2
x+
1
2

(2)假设存在直线l,使N(1,
1
2
)为l被双曲线所截弦的中点.
则设弦CD的C、D两点的坐标为(x3,y3),(x4,y4),
则x32-2y32=4,x42-2y42=4,
相减可得,(x3-x4)(x3+x4)=2(y3-y4)(y3+y4
由N为CD的中点,则x3+x4=2,y3+y4=1,
则k=
y3-y4
x3-x4
=1,
则直线CD的方程为:y-
1
2
=x-1,即y=x-
1
2

代入双曲线方程x2-2y2=4,可得,x2-2x+
9
4
=0,
由于判别式为4-9<0,则该直线l不存在.
点评:本题考查双曲线的方程和运用,考查点差法求中点问题,注意检验判别式的符号,考查运算能力,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,C=
π
3
m
=(3a,b),
n
=(a,-
b
3
),
m
n
,(
m
+
n
)(-
m
+
n
)=-16,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
an
3-2an
,a1=
1
4

(1)bn=
1
an
-1(n∈N*)求数列{bn}的通项公式;
(2)求满足an+an+1+…+a2n-1
1
150
的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设点P(x,y),定义[OP]=|x|+|y|,其中O为坐标原点.对于下列结论:
(1)符合[OP]=1的点P的轨迹围成的图形的面积为2;
(2)设点P是直线:
5
x+2y-2=0
上任意一点,则[OP]min=1;
(3)设点P是直线:y=kx+1(k∈R)上任意一点,则“使得[OP]最小的点P有无数个”的充要条件是“k=±1”;
(4)设点P是圆x2+y2=1上任意一点,则[OP]max=
2

其中正确的结论序号为(  )
A、(1)、(2)、(3)
B、(1)、(3)、(4)
C、(2)、(3)、(4)
D、(1)、(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

A是直二面角α-l-β的棱l上的一点,两条长为a的线段AB、AC分别在α、β内,且分别与l成45°角,则BC的长为(  )
A、a
B、a或
2
a
C、
2
a
D、a或
10
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

福布斯2009年中国富豪榜发布后,有人认为中国富豪受益于活跃的股票市场,得益于强劲的资本市场.股票有风险应考虑中长期投资,若某股票上市时间能持续15年,预测上市初期和后期会因供求及市场前景分析使价格呈连续上涨态势,而中期有将出现供大于求使价格连续下跌.现有三种价格随发行年数x的模拟函数:(A)f(x)=p-qx;(B)f(x)=logqx+p;(C)f(x)=(x-1)(x-q)2+p(以上三式中p,q均为常数,且q>2).
(1)为准确研究其价格走势,应选哪种价格模拟函数?为什么?
(2)若f(1)=4,f(3)=6 ①求出所选函数f(x)的解析式;②一般散户为保证个人的收益,通常考虑打算在价格下跌期间出股票,请问他们会在哪几个年份出售?

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
25
+
y2
16
=1的两个焦点,过F1且平行于y轴的直线交椭圆于A,B两点,则△F2AB的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块边长为1km的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45° (其中点P,Q分别在边BC,CD上),设∠PAB=θ,tanθ=t
(Ⅰ)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值.
(Ⅱ)问探照灯照射在正方形ABCD内部区域的面积S的最大值是多少(km2)?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分别为B1B和A1D的中点.
(1)求直线MN与平面ADD1A1所成角的正切值大小与三棱椎A1-AMN的体积;
(2)求证直线MN∥平面A1B1C1D1

查看答案和解析>>

同步练习册答案