精英家教网 > 高中数学 > 题目详情
(2013•天津)已知函数f(x)=x2lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
2
5
lng(t)
lnt
1
2
分析:(Ⅰ)函数的定义域为(0,+∞),求导数令f′(x)=0,可解得x=
1
e
,由导数在(0,
1
e
),和( 
1
e
,+∞)的正负可得单调性;(Ⅱ)当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),由(Ⅰ)可得函数h(x)的单调性,可得结论;(Ⅲ)令u=lns,原命题转化为0<lnu<
u
2
,一方面由f(s)的单调性,可得u>1,从而lnu>0成立,另一方面,令F(u)=lnu-
u
2
,u>1,通过函数的单调性可得极值最值,进而得证.
解答:解:(Ⅰ)由题意可知函数的定义域为(0,+∞),
求导数可得f′(x)=2xlnx+x2
1
x
=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=
1
e

当x变化时,f′(x),f(x)的变化情况如下表:
 x (0,
1
e
) 
 
1
e
( 
1
e
,+∞)
 f′(x) -  0 +
 f(x) 单调递减 极小值  单调递增 
所以函数f(x)的单调递减区间为(0,
1
e
),单调递增区间为( 
1
e
,+∞)
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
lng(t)
lnt
=
lns
lnf(s)
=
lns
ln(s2lns)
=
lns
2lns+lnlns
=
u
2u+lnu
,其中u=lns,
要使
2
5
lng(t)
lnt
1
2
成立,只需0<lnu<
u
2

当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,
所以s>e,即u>1,从而lnu>0成立,
另一方面,令F(u)=lnu-
u
2
,u>1,F′(u)=
1
u
-
1
2

令F′(u)=0,可解得u=2,
当1<u<2时,F′(u)>0,当u>2时,F′(u)<0,
故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2-1<0,
故有F(u)=lnu-
u
2
<0,即lnu<
u
2

综上可证:当t>e2时,有
2
5
lng(t)
lnt
1
2
成立.
点评:本题考查利用导数研究函数的单调性,涉及极值的求解和不等式的证明,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(log
1
2
a)≤2f(1)
,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若[-
1
2
1
2
]⊆A
,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)已知下列三个命题:
①若一个球的半径缩小到原来的
1
2
,则其体积缩小到原来的
1
8

②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2=
1
2
相切.
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=
1+2i
1+2i

查看答案和解析>>

同步练习册答案