精英家教网 > 高中数学 > 题目详情

已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.

m=-2时,f(x)有唯一零点,该零点为0

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足
假定该产品产销平衡,根据上述统计规律求:
(1)要使工厂有盈利,产品数量x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex,x∈R.
(1)若直线y=kx+1与f(x)的反函数的图像相切,求实数k的值;
(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某化工企业2012年底投入100万元购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单元:万元).
(1)用x表示y;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.求该企业几年后需要重新更换新的污水处理设备.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga(x+1)(a>1),若函数yg(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)判断函数的单调性并用定义证明;
(2)令,求在区间的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)和g(x)都是定义在同一区间上的两个函数,若对任意x∈[1,2],都有|f(x)+g(x)|≤8,则称f(x)和g(x)是“友好函数”,设f(x)=axg(x)=.
(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函数”的概率;
(2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函数”的概率.

查看答案和解析>>

同步练习册答案