½â£º£¨1£©ÊýÁÐ{a
n}ÊÇ¡°·â±ÕÊýÁС±£¬ÒòΪ£ºa
n=4+£¨n-1£©•2=2n+2£¬
¶ÔÈÎÒâµÄm£¬n¡ÊN
*£¬ÓÐa
m+a
n=£¨2m+2£©+£¨2n+2£©=2£¨m+n+1£©+2£¬
¡ßm+n+1¡ÊN
*ÓÚÊÇ£¬Áîp=m+n+1£¬ÔòÓÐa
p=2p+2¡Ê{a
n}
£¨2£©½â£ºÓÉ{a
n}ÊÇ¡°·â±ÕÊýÁС±£¬µÃ£º¶ÔÈÎÒâm£¬n¡ÊN
*£¬±Ø´æÔÚp¡ÊN
*ʹa
1+£¨n-1£©+a
1+£¨m-1£©=a
1+£¨p-1£©³ÉÁ¢£¬
ÓÚÊÇÓÐa
1=p-m-n+1ΪÕûÊý£¬
ÓÖ¡ßa
1£¾0
¡àa
1ÊÇÕýÕûÊý£®
Èôa
1=1Ôò
£¬ËùÒÔ
£¬
Èôa
1=2£¬Ôò
£¬ËùÒÔ
£¬
Èôa
1¡Ý3£¬Ôò
£¬ÓÚÊÇ
£¬ËùÒÔ
£¬
×ÛÉÏËùÊö£¬a
1=2£¬
¡àa
n=n+1£¨n¡ÊN
*£©£¬ÏÔÈ»£¬¸ÃÊýÁÐÊÇ¡°·â±ÕÊýÁС±£®
£¨3£©½áÂÛ£ºÊýÁÐ{a
n}Ϊ¡°·â±ÕÊýÁС±µÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹a
1=md£®
Ö¤Ã÷£º£¨±ØÒªÐÔ£©ÈÎÈ¡µÈ²îÊýÁеÄÁ½Ïîa
s£¬a
t£¨s¡Ùt£©£¬Èô´æÔÚa
kʹa
s+a
t=a
k£¬Ôò2a
1+£¨s+t-2£©d=a
1+£¨k-1£©d?a
1=£¨k-s-t+1£©d
¹Ê´æÔÚm=k-s-t+1¡ÊZ£¬Ê¹a
1=md£¬
ÏÂÃæÖ¤Ã÷m¡Ý-1£®µ±d=0ʱ£¬ÏÔÈ»³ÉÁ¢£®
¶Ôd¡Ù0£¬Èôm£¼-1£¬ÔòÈ¡p=-m¡Ý2£¬¶Ô²»Í¬µÄÁ½Ïîa
1£¬a
p£¬
´æÔÚa
qʹa
1+a
p=a
q£¬
¼´2md+£¨-m-1£©d=md+£¨q-1£©d?qd=0£¬
ÕâÓëq£¾0£¬d¡Ù0ì¶Ü£¬
¹Ê´æÔÚÕûÊým¡Ý-1£¬Ê¹a
1=md£®
£¨³ä·ÖÐÔ£©Èô´æÔÚÕûÊým¡Ý-1ʹa
1=md£¬ÔòÈÎÈ¡µÈ²îÊýÁеÄÁ½Ïîa
s£¬a
t£¨s¡Ùt£©£¬
ÓÚÊÇa
s+a
t=a
1+£¨s-1£©d+md+£¨t-1£©d=a
1+£¨s+m+t-2£©d=a
s+m+t-1ÓÉÓÚs+t¡Ý3£¬m¡Ý-1
¡às+t+m-1ΪÕýÕûÊý£¬
¡àa
s+m+t-1¡Ê{a
n}Ö¤±Ï£®
·ÖÎö£º£¨1£©ÓÉÌâÒâÖª¶ÔÈÎÒâµÄm£¬n¡ÊN
*£¬ÓÐa
m+a
n=£¨2m+2£©+£¨2n+2£©=2£¨m+n+1£©+2£¬Áîp=m+n+1£¬ÓÐa
p=2p+2¡Ê{a
n}£¬ËùÒÔÊýÁÐ{a
n}ÊÇ¡°·â±ÕÊýÁС±£®
£¨2£©ÓÉ{a
n}ÊÇ¡°·â±ÕÊýÁС±£¬µÃ£º¶ÔÈÎÒâm£¬n¡ÊN
*£¬±Ø´æÔÚp¡ÊN
*ʹa
1+£¨n-1£©+a
1+£¨m-1£©=a
1+£¨p-1£©³ÉÁ¢£¬ÓÚÊÇÓÐa
1=p-m-n+1ΪÕûÊý£¬ÓÉ´ËÈëÊÖ½áºÏÌâÉèÌõ¼þÄܹ»ÍƵ¼³öa
n=n+1£¨n¡ÊN
*£©£®
£¨3£©½áÂÛ£ºÊýÁÐ{a
n}Ϊ¡°·â±ÕÊýÁС±µÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹a
1=md£®È»ºóÏÈÖ¤Ã÷±ØÒªÐÔ£¬ÔÙÖ¤Ã÷³ä·ÖÐÔ£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÐÔÖʵÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®