ÉèÊýÁÐ{an}£¨n=1£¬2£¬¡­£©ÊǵȲîÊýÁУ¬ÇÒ¹«²îΪd£¬ÈôÊýÁÐ{an}ÖÐÈÎÒ⣨²»Í¬£©Á½ÏîÖ®ºÍÈÔÊǸÃÊýÁÐÖеÄÒ»ÏÔò³Æ¸ÃÊýÁÐÊÇ¡°·â±ÕÊýÁС±£®
£¨1£©Èôa1=4£¬d=2£¬ÅжϸÃÊýÁÐÊÇ·ñΪ¡°·â±ÕÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£¿
£¨2£©ÉèSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Èô¹«²îd=1£¬a1£¾0£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕâÑùµÄ¡°·â±ÕÊýÁС±£¬Ê¹Êýѧ¹«Ê½£»Èô´æÔÚ£¬Çó{an}µÄͨÏʽ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÊÔÎÊ£ºÊýÁÐ{an}Ϊ¡°·â±ÕÊýÁС±µÄ³äÒªÌõ¼þÊÇʲô£¿¸ø³öÄãµÄ½áÂÛ²¢¼ÓÒÔÖ¤Ã÷£®

½â£º£¨1£©ÊýÁÐ{an}ÊÇ¡°·â±ÕÊýÁС±£¬ÒòΪ£ºan=4+£¨n-1£©•2=2n+2£¬
¶ÔÈÎÒâµÄm£¬n¡ÊN*£¬ÓÐam+an=£¨2m+2£©+£¨2n+2£©=2£¨m+n+1£©+2£¬
¡ßm+n+1¡ÊN*ÓÚÊÇ£¬Áîp=m+n+1£¬ÔòÓÐap=2p+2¡Ê{an}
£¨2£©½â£ºÓÉ{an}ÊÇ¡°·â±ÕÊýÁС±£¬µÃ£º¶ÔÈÎÒâm£¬n¡ÊN*£¬±Ø´æÔÚp¡ÊN*ʹa1+£¨n-1£©+a1+£¨m-1£©=a1+£¨p-1£©³ÉÁ¢£¬
ÓÚÊÇÓÐa1=p-m-n+1ΪÕûÊý£¬
ÓÖ¡ßa1£¾0
¡àa1ÊÇÕýÕûÊý£®
Èôa1=1Ôò£¬ËùÒÔ£¬
Èôa1=2£¬Ôò£¬ËùÒÔ£¬
Èôa1¡Ý3£¬Ôò£¬ÓÚÊÇ£¬ËùÒÔ£¬
×ÛÉÏËùÊö£¬a1=2£¬
¡àan=n+1£¨n¡ÊN*£©£¬ÏÔÈ»£¬¸ÃÊýÁÐÊÇ¡°·â±ÕÊýÁС±£®
£¨3£©½áÂÛ£ºÊýÁÐ{an}Ϊ¡°·â±ÕÊýÁС±µÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹a1=md£®
Ö¤Ã÷£º£¨±ØÒªÐÔ£©ÈÎÈ¡µÈ²îÊýÁеÄÁ½Ïîas£¬at£¨s¡Ùt£©£¬Èô´æÔÚakʹas+at=ak£¬Ôò2a1+£¨s+t-2£©d=a1+£¨k-1£©d?a1=£¨k-s-t+1£©d
¹Ê´æÔÚm=k-s-t+1¡ÊZ£¬Ê¹a1=md£¬
ÏÂÃæÖ¤Ã÷m¡Ý-1£®µ±d=0ʱ£¬ÏÔÈ»³ÉÁ¢£®
¶Ôd¡Ù0£¬Èôm£¼-1£¬ÔòÈ¡p=-m¡Ý2£¬¶Ô²»Í¬µÄÁ½Ïîa1£¬ap£¬
´æÔÚaqʹa1+ap=aq£¬
¼´2md+£¨-m-1£©d=md+£¨q-1£©d?qd=0£¬
ÕâÓëq£¾0£¬d¡Ù0ì¶Ü£¬
¹Ê´æÔÚÕûÊým¡Ý-1£¬Ê¹a1=md£®
£¨³ä·ÖÐÔ£©Èô´æÔÚÕûÊým¡Ý-1ʹa1=md£¬ÔòÈÎÈ¡µÈ²îÊýÁеÄÁ½Ïîas£¬at£¨s¡Ùt£©£¬
ÓÚÊÇas+at=a1+£¨s-1£©d+md+£¨t-1£©d=a1+£¨s+m+t-2£©d=as+m+t-1
ÓÉÓÚs+t¡Ý3£¬m¡Ý-1
¡às+t+m-1ΪÕýÕûÊý£¬
¡àas+m+t-1¡Ê{an}Ö¤±Ï£®
·ÖÎö£º£¨1£©ÓÉÌâÒâÖª¶ÔÈÎÒâµÄm£¬n¡ÊN*£¬ÓÐam+an=£¨2m+2£©+£¨2n+2£©=2£¨m+n+1£©+2£¬Áîp=m+n+1£¬ÓÐap=2p+2¡Ê{an}£¬ËùÒÔÊýÁÐ{an}ÊÇ¡°·â±ÕÊýÁС±£®
£¨2£©ÓÉ{an}ÊÇ¡°·â±ÕÊýÁС±£¬µÃ£º¶ÔÈÎÒâm£¬n¡ÊN*£¬±Ø´æÔÚp¡ÊN*ʹa1+£¨n-1£©+a1+£¨m-1£©=a1+£¨p-1£©³ÉÁ¢£¬ÓÚÊÇÓÐa1=p-m-n+1ΪÕûÊý£¬ÓÉ´ËÈëÊÖ½áºÏÌâÉèÌõ¼þÄܹ»ÍƵ¼³öan=n+1£¨n¡ÊN*£©£®
£¨3£©½áÂÛ£ºÊýÁÐ{an}Ϊ¡°·â±ÕÊýÁС±µÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹a1=md£®È»ºóÏÈÖ¤Ã÷±ØÒªÐÔ£¬ÔÙÖ¤Ã÷³ä·ÖÐÔ£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÐÔÖʵÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an} Ç°nÏîºÍSn=
n(an+1)2
£¬n¡ÊN*ÇÒa2=a
£¬
£¨1£©ÇóÊýÁÐ{an} µÄͨÏʽan£®
£¨2£©Èôa=3£¬Tn=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1£¬ÇóT100µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3£¬g £¨x£©=x+
x
£®
£¨¢ñ£©Çóº¯Êýh £¨x£©=f£¨x£©-g £¨x£©µÄÁãµã¸öÊý£®²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÉèÊýÁÐ{ an}£¨n¡ÊN*£©Âú×ãa1=a£¨a£¾0£©£¬f£¨an+1£©=g£¨an£©£¬Ö¤Ã÷£º´æÔÚ³£ÊýM£¬Ê¹µÃ¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan¡ÜM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Ç°nÏîºÍSn£¬ÇÒSn=2an-2£¬n¡ÊN+£®
£¨¢ñ£©ÊÔÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éècn=
nan
£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Ç°nÏîºÍΪSn£¬Ê×ÏîΪx£¨x¡ÊR£©£¬Âú×ãSn=nan-
n(n-1)2
£¬n¡ÊN+£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨2£©ÇóÖ¤£ºÈôÊýÁÐ{an}ÖдæÔÚÈýÏî¹¹³ÉµÈ±ÈÊýÁУ¬ÔòxΪÓÐÀíÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Ç°nÏîºÍSn=Aqn+B£¬ÔòA+B=0ÊÇʹ{an}³ÉΪ¹«±È²»µÈÓÚ1µÄµÈ±ÈÊýÁеģ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸