【题目】计算求值.
(1)已知cosα= ,α为锐角,求tan2α的值;
(2)已知sin(θ+ )= ,θ为钝角,求cosθ的值.
【答案】
(1)∵cosα= ,α为锐角,
∴sinα= = ,从而可求tan =
∴tan2α= = =﹣
(2)∵sin(θ+ )= ,θ为钝角,
∴θ+ ∈( , ),
∴cos(θ+ )=﹣ =﹣ ,
∴cosθ=cos[(θ+ )﹣ ]
=cos(θ+ )cos +sin(θ+ )sin
=﹣ × +
=﹣
【解析】(1)由已知利用同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式即可求tan2α的值.(2)由已知可求范围θ+ ∈( , ),利用同角三角函数基本关系式可求cos(θ+ )的值,利用θ=(θ+ )﹣ ,根据两角差的余弦函数公式即可计算得解.
【考点精析】认真审题,首先需要了解两角和与差的余弦公式(两角和与差的余弦公式:).
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.数据表明,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组比第七组少1人.
(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命题“t∈R,A∩B≠”是真命题,则实数a的取值范围是( )
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=120°,AC=3,△ABC的面积等于 ,D为边长BC上一点.
(1)求BC的长;
(2)当AD= 时,求cos∠CAD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分为16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 ﹣ =1与直线y=2x+m有两个交点,则m的取值范围是( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com