精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3-3xyf(x)上一点P(1,-2),过点P作直线l.

(1)求使直线lyf(x)相切且以P为切点的直线方程;

(2)求使直线lyf(x)相切且切点异于点P的直线方程yg(x).

【答案】(1)y=-2(2)y=-x

【解析】

(1)由已知可得斜率函数为,进而求出所过点切线的斜率,代入点斜式公式即可;(2)设另一切点为,求出该点切线方程,将点代入得到关于的方程,解出即可得结果.

(1)由,得

过点且以为切点的直线的斜率

∴所求直线方程为

(2)设切点坐标为

则直线l的斜率k2f′(x0)=3-3,

∴直线l的方程为y-(-3x0)=(3-3)(xx0),

又直线l过点P(1,-2),

∴-2-(-3x0)=(3-3)(1-x0),

-3x0+2=(3-3)(x0-1),

解得x0=1(舍去)或x0=-

故所求直线斜率k=3-3=-

于是,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:

步数/

10000以上

男生人数/

1

2

7

15

5

女性人数/

0

3

7

9

1

规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.

(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;

积极性

懈怠性

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线的斜率为,直线的斜率为,且.

(1)求点的轨迹的方程;

(2),连接并延长,与轨迹交于另一点,点中点,是坐标原点的面积之和为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,为表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:

1)若,候鸟停下休息时,它每分钟的耗氧量为多少个单位?

2)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的单调递增区间;

2)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)若对任意的实数,都有成立,求实数的取值范围;

(Ⅲ)若的最大值是,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有50名学生,男女人数不相等。随机询问了该班5名男生和5名女生的某次数学测试成绩,用茎叶图记录如下图所示,则下列说法一定正确的是( )

A. 这5名男生成绩的标准差大于这5名女生成绩的标准差。

B. 这5名男生成绩的中位数大于这5名女生成绩的中位数。

C. 该班男生成绩的平均数大于该班女生成绩的平均数。

D. 这种抽样方法是一种分层抽样。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,短轴长和焦距都等于2,是椭圆上的一点,且在第一象限内,过且斜率等于的直线与椭圆交于另一点,点关于原点的对称点为.

(1)求椭圆的方程;

(2)证明:直线的斜率为定值;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·江西联考]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

20

10

10

20

15

5

以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,.某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

同步练习册答案