精英家教网 > 高中数学 > 题目详情
函数y=
11-x
与函数y=2sinπx,x∈[-2,4]的图象的所有交点的横坐标之和=
8
8
分析:y1=
1
1-x
的图象由奇函数y=-
1
x
向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.
解答:解:函数y1=
1
1-x
,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图
当1<x≤4时,y1<0
而函数y2在(1,4)上出现1.5个周期的图象,
在(1,
3
2
)和(
5
2
7
2
)上是减函数;
在(
3
2
5
2
)和(
7
2
,4上是增函数.
∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H
相应地,y1在(-2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D
且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的横坐标之和为8
故答案为:8
点评:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州一模)已知函数f(x)=ln(1+x)的导函数是y′=
1
1+x
,函数f(x)=ln(1+x)-
ax
1-x
(a∈R)

(I)当a=1,-1<x<1时,求函数f(x)的最大值;
(II)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)若平面直角坐标系中两点M,N满足条件:
①M,N分别在函数f(x),g(x)的图象上;
②M,N关于(1,O)对称,则称点对(M,N)是一个“相望点对”(说明:(M,N)和(N,M)是同一个“相望点对”).
函数y=
1
1-x
与y=2sinπx(-2≤x≤4)的图象中“相望点对”的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)给定下列结论:其中正确的个数是(  )
①用20cm长的铁丝折成的矩形最大面积是25cm2
②命题“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;
③函数y=2-x与函数y=lo
g
 
1
2
x
的图象关于直线y=x对称.

查看答案和解析>>

科目:高中数学 来源:许昌三模 题型:单选题

若平面直角坐标系中两点M,N满足条件:
①M,N分别在函数f(x),g(x)的图象上;
②M,N关于(1,O)对称,则称点对(M,N)是一个“相望点对”(说明:(M,N)和(N,M)是同一个“相望点对”).
函数y=
1
1-x
与y=2sinπx(-2≤x≤4)的图象中“相望点对”的个数是(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案