精英家教网 > 高中数学 > 题目详情
设函数y=x+
ax+1
,(x≥0).
(1)当a=2时,求函数f(x)的最小值.
(2)当 0<a<1 时,求函数f(x)的最小值.
分析:(1)利用基本不等式即可得出;
(2)利用导数研究函数的单调性即可得出.
解答:解:(1)当a=2时,∵x≥0,∴f(x)=x+1+
2
x+1
-1
≥2
(x+1)•
2
x+1
-1=2
2
-1
,当且仅当x=
2
-1
时取等号.
∴函数f(x)的最小值是2
2
-1

(2)当 0<a<1 时,f(x)=1-
a
(x+1)2
=
x2+2x+1-a
(x+1)2
>0,
∴函数f(x)在[0,+∞)上单调递增,∴当且仅当x=0时f(x)取得最小值f(0)=a.
故函数f(x)的最小值为a.
点评:熟练掌握基本不等式的性质、利用导数研究函数的单调性等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)
在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+
c
xn
(c>0)
的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
k
3x+5
(0≤x≤10)
,若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数y=x+
a
x
(其中a为大于0的常数),在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三12月月考理科数学卷 题型:解答题

(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,

(1)求a、b、c的值;       

(2)求函数的递减区间。

 

查看答案和解析>>

同步练习册答案