精英家教网 > 高中数学 > 题目详情
6.函数y=sinx+$\sqrt{3}$cosx(0≤x<2π)取得最大值时,x=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 直接利用辅助角公式化简,再由$x+\frac{π}{3}=\frac{π}{2}+2kπ,k∈Z$(0≤x<2π)求得答案.

解答 解:y=sinx+$\sqrt{3}$cosx=2($\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx$)=2sin(x+$\frac{π}{3}$).
由$x+\frac{π}{3}=\frac{π}{2}+2kπ,k∈Z$,得$x=\frac{π}{6}+2kπ,k∈Z$.
∵0≤x<2π,∴当k=0时,x=$\frac{π}{6}$.
故选:A.

点评 本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且椭圆C过点A(1,$\frac{{\sqrt{3}}}{2}$),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;
(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1和定点A(6,0),O是坐标原点,动点P在椭圆C移动,$\overrightarrow{OA}$=$\overrightarrow{PB}$,点D是线段PB的中点,直线OB与AD相交于点M,设$\overrightarrow{OM}$=λ$\overrightarrow{OB}$.
(Ⅰ)求λ的值;
(Ⅱ)求点M的轨迹E的方程,如果E是中心对称图形,那么类比圆的方程用配方求对称中心的方法,求轨迹E的对称中心;如果E不是中心对称图形,那么说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$≥$\frac{25}{24}$对一切正整数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{2}{1-i}$(i是虚数单位)的虚部是(  )
A.1B.iC.$\frac{1}{2}$D.$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{2}$)+1.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)若将函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于直线x=$\frac{π}{4}$轴对称,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若a=3,b=$\sqrt{3}$,A=$\frac{π}{3}$,则C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义域为[a-4,2a-2]的奇函数f(x)=2016x3-sinx+b+2,则f(a)+f(b)的值为(  )
A.0B.1C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈R,sinx>a,若¬p是真命题,则实数a的取值范围为[1,+∞).

查看答案和解析>>

同步练习册答案