精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1和定点A(6,0),O是坐标原点,动点P在椭圆C移动,$\overrightarrow{OA}$=$\overrightarrow{PB}$,点D是线段PB的中点,直线OB与AD相交于点M,设$\overrightarrow{OM}$=λ$\overrightarrow{OB}$.
(Ⅰ)求λ的值;
(Ⅱ)求点M的轨迹E的方程,如果E是中心对称图形,那么类比圆的方程用配方求对称中心的方法,求轨迹E的对称中心;如果E不是中心对称图形,那么说明理由.

分析 (Ⅰ)推导出$\overrightarrow{OM}$=$λ\overrightarrow{OA}+λ\overrightarrow{OP}$,从而$\overrightarrow{OM}=λ\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OA}$,再由A,M,D三点共线,能求出λ的值.
(Ⅱ)设P(x0,y0),M(x,y),推导出$\left\{\begin{array}{l}{{x}_{0}=\frac{3}{2}(x-4)}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$,由点P(x0,y0)在椭圆C上,能求出点M轨迹E也是椭圆,对称中心为(4,0).

解答 解:(Ⅰ)∵$\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{OP}$,$\overrightarrow{OM}=λ\overrightarrow{OB}$,
∴$\overrightarrow{OM}$=$λ\overrightarrow{OA}+λ\overrightarrow{OP}$,
又∵点D是线段PB的中点,且$\overrightarrow{OA}=\overrightarrow{PB}$,
∴$\overrightarrow{OM}=λ\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OA}$,
∵A,M,D三点共线,$\frac{1}{2}λ+λ=1$,解得$λ=\frac{2}{3}$.
(Ⅱ)设P(x0,y0),M(x,y),
由(Ⅰ)知,$\overrightarrow{OM}$=$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OP}$=(4+$\frac{2}{3}{x}_{0}$,$\frac{2}{3}{y}_{0}$),
则$\left\{\begin{array}{l}{x=4+\frac{2}{3}{x}_{0}}\\{y=\frac{2}{3}{y}_{0}}\end{array}\right.$,∴$\left\{\begin{array}{l}{{x}_{0}=\frac{3}{2}(x-4)}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$,
∵点P(x0,y0)在椭圆C上,∴$\frac{{{x}_{0}}^{2}}{9}+\frac{{{y}_{0}}^{2}}{4}$=1,
∴$\frac{1}{4}$(x-4)2+$\frac{9}{16}{y}^{2}$=1,
即点M轨迹E也是椭圆,对称中心为(4,0).

点评 本题考查实数值的求法,考查轨迹方程的求法,是中档题,解题时要认真审题,注意中点坐标公式、相关点法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在正四棱锥P-ABCD中,所有棱长均等于2$\sqrt{2}$,E,F分别为PD,PB的中点,求异面直线AE与CF所成角的余弦值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b∈R,则“a>b”是“a-3<b-3”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在棱长均相等的正三棱柱ABC-A1B1C1中,D是BB1的中点,F在AC1上,且DF⊥AC1,则下列结论:
(1)AC1⊥BC;
(2)AF=FC1
(3)平面DAC1⊥平面ACC1A1
(4)直线DF∥平面ABC,
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,则y′=0.
正确个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=-1,an+1=$\frac{(3n+3){a}_{n}+(4n+6)}{n}$,数列{bn}满足bn=$\frac{{a}_{n}+2}{n}$.
(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=$\frac{{3}^{n-1}}{{a}_{n}+2}$.求证:n≥2时,Sn2≥2($\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=${log}_{\frac{1}{2}}$(x2-6x+17)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sinx+$\sqrt{3}$cosx(0≤x<2π)取得最大值时,x=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案