精英家教网 > 高中数学 > 题目详情
8.已知a,b∈R,则“a>b”是“a-3<b-3”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要D.充要条件

分析 当a=0或b=0时,a-3<b-3不成立;当a<0或b>0时,a-3<b-3成立,但是a>b不成立,即可判断出结论.

解答 解:当a=0或b=0时,a-3<b-3不成立,∴“a>b”不是“a-3<b-3”的充分条件;
当a<0或b>0时,a-3<b-3成立,但是a>b不成立,∴“a>b”是“a-3<b-3”的必要条件.
∴“a>b”是“a-3<b-3”的既不充分也不必要.
故选:C.

点评 本题考查了不等式的性质、简易逻辑的判断方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点横坐标为xn,则log2012x1+log2012x2+…+log2012x2012的值为(  )
A.-log20122011B.-1C.-1+log20122011D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\sqrt{1-x}$+$\sqrt{2x}$的定义域为(  )
A.(-∞,1]B.[0,+∞)C.(-∞,0]∪[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且椭圆C过点A(1,$\frac{{\sqrt{3}}}{2}$),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;
(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴与点E.
(1)求椭圆C的方程; 
(2)已知P为线段AD的中点,OM∥l,并且OM交椭圆C于点M.
(i)是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在,请说明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知0<x<$\frac{2}{3}$,f(x)=x3,g(x)=x2,则f′(x)<g′(x)(填>或<).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设点(a,b)是区域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$内的任意一点,则$\frac{b+2}{a+1}$的取值范围是($\frac{2}{5}$,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1和定点A(6,0),O是坐标原点,动点P在椭圆C移动,$\overrightarrow{OA}$=$\overrightarrow{PB}$,点D是线段PB的中点,直线OB与AD相交于点M,设$\overrightarrow{OM}$=λ$\overrightarrow{OB}$.
(Ⅰ)求λ的值;
(Ⅱ)求点M的轨迹E的方程,如果E是中心对称图形,那么类比圆的方程用配方求对称中心的方法,求轨迹E的对称中心;如果E不是中心对称图形,那么说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若a=3,b=$\sqrt{3}$,A=$\frac{π}{3}$,则C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案